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1. Outiline

The goal is to talk about semisimple Lie groups, mainly noncompact real semisim-
ple Lie groups. This is a very broad subject so we will do our best to be concise
and cover just what we need to discuss the Cartan decomposition theorem, par-
abolic subgroups and associated symmetric spaces. To do this we need to first
introduce some notation and review a lot of Lie algebra theory, the sources I have
used are [1] [3] [5] [4] [6]. Here is a general outline of what will be covered.
1. General set up
2. Real forms, Cartan involutions and Cartan Decomposition Theorem
3. Some facts about the symmetric space G/K.
4. Complex semisimple Lie algebras
5. Restricted roots, Iwasawa Decomposition and real parabolic subgroups
The talk will have many examples even though this write up does not. Very little
will be proven.

2. General Set up

Let G be a Lie group, left translation gives rise to a finite dimensional Lie
subalgebra of the Lie algebra of vector fields on G with Lie bracket, this the Lie
algebra of left invariant vector fields. If Lg : G→G denotes left translation by g ∈ G
then a vector field X ∈ (Γ(TG)) is left invariant if dLg(X) = X for all g ∈ G, i.e.
∀g ∈ G and ∀ h ∈ G, we have dLg(X(h)) = X(g · h).

The set of left invariant vector fields is closed under Lie bracket, making it into
a Lie subalgebra which we denote by g ⊂ Γ(TG). Since every left invariant vector
field is determined by its value at a single point it follows that g ∼= TgG for any
g ∈ G, we therefore identify g with the tangent space at the identity, g = TeG.

The bracket on TeG is defined by taking the Lie bracket of the associated left
invariant vector fields and evaluating it at the identity. With this description of
the Lie algebra we get a natural description of the exponential map, exp : g→G by
flowing along the left invariant vector fields associated to g.

2.1. Lie algebras. This section is mostly from [6]. Given a finite dimensional Lie
algebra g over K = R or C we get a natural representation of

ad : g→gl(g)

defined by
adX(Y ) = [X, Y ]

(the fact that it is a representation follows from the Jacobi identity). The image of
ad

adg ⊂ der(g) ⊂ gl(g)
1
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is, by definition, the ideal of inner derivations in the Lie algbera der(g) of derivations
on g.

For every X ∈ g we have exp(adX) ⊂ Aut(g) ⊂ GL(g), the image of exp in
Aut(g) is called the group of inner automorphisms and will be denoted Int(g). In
fact, the Lie subalgebras adg ⊂ der(g) are the tangent Lie algebras of Int(g) ⊂
Aut(g).

If G is a Lie group then G acts on itself via inner automorphisms. That is, if
αg : G→G is defined by

αg(h) = g · h · g−1

we get a representation Ad : G→Aut(g) ⊂ GL(g) of G in g given by Adg = d(αg)(e).
The Lie algebra representation corresponding to Ad (i.e. d(Ad)(e)) is the previously
mentioned ad. The image of Ad, denoted AdG, is called the adjoint group of G. It
is the Lie group with lie algebra g and trivial center.

We will mainly be interested in semisimple Lie algebras and Lie groups. A Lie
group is called nilpotent, solvable, reductive, semisimple or simple if its Lie algebra
has this property. We begin with a few definitions.

Definition 2.1. A Lie algebra g is simple if it is nonabelian and contains no
nontrivial ideals.

Semisimple Lie algebras are direct sums of simple Lie algebras. This is usu-
ally something that is proven and not taken as a definition. To properly define
semisimple Lie algebras we need to first define solvable Lie algebras.

Definition 2.2. Let g be a Lie algebra, let g1 = [g, g] and define gj = [gj−1, gj−1]
inductively, g is called solvable if the series

g ⊃ g1 ⊃ g2 ⊃ . . .

terminates.

The standard example of a solvable Lie algebra is the Lie algebra of upper
triangular matrices.

Definition 2.3. Let g be a Lie algebra, let g1 = [g, g] and define gj = [g, gj−1]
inductively, g is called nilpotent if the series

g ⊃ g1 ⊃ g2 ⊃ . . .

terminates.

The standard example of a nilpotent Lie algebra is the Lie algebra of strictly
upper triangular matrices.

Definition 2.4. A Lie algebra g is semisimple if it contains no nonzero solvable
ideals.

Another useful criterion for semisimplicity was given by Cartan using the Killing
form. The representation ad allows us to define an Int(g) invariant symmetric
bilinear form called the Killing form,

Bg : g× g→K,

defined by
Bg(X,Y ) = Tr(adxady).

Theorem 2.5. Lie algebra is semisimple if and only if Bg is nondegenerate.
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From this we see that semisimple Lie algebras have trivial centers. One key
property of semisimple Lie algebra’s is that every finite dimensional representation
splits as a direct sum of irreducible subrepresentations. The converse is not true,
for instance g(n, R) has the property that every finite dimensional representation
splits as a direct sum of irreducible subrepresentations; but it is not semisimple (it
has a center). This leads us to the slightly more general notion of a reductive Lie
algebra

Definition 2.6. A Lie algebra is reductive if it is of the form z(g)⊕ [g, g]. Alterna-
tively, a Lie algebra is reductive if and only if every finite dimensional representation
splits as a direct sum of irreducibles.

3. Real forms, Cartan involutions and Cartan Decomposition
Theorem

This section is mostly from [5] and [6]. As mentioned at the beginning, we are
mainly interested in real semisimple Lie groups and Lie algebra’s. However, the
structure theory of complex semisimple Lie algebras is simpler and has many nice
properties. To go from complex Lie algbera’s to real Lie algebras we need to discuss
real forms. First, note that if g is a real Lie algebra then

g⊗ C ∼= g⊕ ig

is a complex Lie algebra, note also that g is semisimple if and only if g ⊗ C is. In
the decomposition

g⊗ C = g⊕ ig,

g is the fixed points of the conjugate linear involution of conjugation, this leads us
to the definition of a general real form.

Definition 3.1. Let g be a complex Lie algebra and

σ : g→g

a conjugate linear involution, σ defines a decomposition

g = g+ ⊕ g−

of g into its +1 and −1 eigenspaces. The subalgebra g+ is called a real form of g.

If g+ ⊂ g is the real form coming from involution σ then, since σ is conjugate
linear, it has the property g+ ⊗ C ∼= g.

Here are some definitions and facts we will need:
1. A Lie algebra is called compact if and only if it is the Lie algebra of a compact

Lie group.
2. It is a theorem that a Lie algebra is compact if and only if it admits an invariant

scalar product.
3. In the semisimple case the Killing form, B, is negative definite if and only if the

Lie algebra is compact, in which case −B provides an invariant scalar product.
4. Complex semisimple Lie algebra’s have two special types of real forms; a compact

real form and a split real form both of which are unique up to conjugation.
5. The compact real form is a real form g+ ⊂ g that is a compact Lie algebra.

We will denote the compact real involution by σ, and denote the +1 eigenspace
of σ by u. Then

g = u⊕ iu,
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and the Killing form is negative definite on u and positive definite on iu. If G is a
complex semisimple Lie group with Lie algebra g, then exp(u) is a maximal compact
subgroup of the complex Lie group G.

3.1. Cartan Decomposition on Lie algebra level.

Definition 3.2. Let g be a real Lie algebra, an involution θ : g→g is called a
Cartan involution if the symmetric bilinear form Bθ(X,Y ) = −B(X, θ(Y )) is pos-
itive definite.

Every real semisimple Lie algebra has a Cartan involution, this is a consequence
of the existence of compact real forms for complex semisimple Lie algebras. To see
this, let g be a real semisimple Lie algebra and

gC ∼= g⊕ ig

be its complexification, let τ be the conjugation on gC, giving real form g. Let
σ : gC→gC be a compact real form so that τσ = στ , (such a compact form always
exists).

Claim 3.3. (τσ) = θ is a Cartan involution when restricted to g.

Proof. The involution θ defines an eigenspace decomposition of gC = gC
+⊕gC

−. Since
θ commutes with σ and τ, both real forms u and g are stable under θ. Thus we
have the eigenspace decompositions

g = g+ ⊕ g−

u = u+ ⊕ u−.

Call g+ = k and g− = p, note that θ coincides with σ on g, so k = u+ and p = iu−.
We have the following decompositions:

g = k⊕ p

u = k⊕ ip.

It is now straightforward to check that θ defines a Cartan involution. !
We call a choice of such a involution θ and its corresponding decomposition

g = k⊕ p a Cartan Decomposition.
Note for a Cartan decomposition g = k⊕ p we have

[k, k] ⊂ k [k, p] ⊂ p [p, p] ⊂ k

It follows that the Cartan decomposition is orthogonal with respect to both B and
Bθ. The Killing form B is negative definite on k and positive definite on p, thus
k ⊂ g is a maximal compact subalgebra. If G is a semisimple Lie group with Lie
algebra g, then exp(k) = K ⊂ G is a maximal compact subgroup. Thus a Cartan
decomposition gives a AdK invariant orthogonal splitting g = k⊕ p.

3.2. Cartan Decomposition on Lie group level. The Cartan decomposition
theorem gives a decomposition of a real semisimple Lie Group G with respect to
a maximal compact subgroup. We will not prove the theorem, however during the
talk we will give some examples.

Theorem 3.4. Let G be a semisimple Lie group, let θ be a Cartan involution of g,
let g = k⊕ p be the corresponding Cartan decomposition, and let K be the analytic
subgroup of G with Lie algebra k. Then
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1. There exists a Lie group involutative automorphism Θ of G with differential θ.
2. The subgroup of G fixed by Θ is K
3. The mapping K × p→G defined by (k, X) +→ (kexp(X)) is a diffeomorphism.
4. K is closed and contains the center of G.

Note that this theorem generalizes the polar decomposition of invertible matri-
ces. Notice also that this decomposition is not a decomposition into subgroups, as
exp(p) ⊂ G is not a subgroup.

4. The symmetric space G/K

This brief section is mostly from [1]. Let H ⊂ G be a closed subgroup and
suppose g admits a decomposition

g = h⊕m

that is AdH invariant and orthogonal with respect to a G-invariant metric. By the
results in the previous section, if K ⊂ G is a maximal compact subgroup then g
admits such a decomposition g = k⊕ p.

The Lie group G is the total space of a principal H bundle G→G/H. If

ωG
MC ∈ Ω1(G, g)

is the (left) Maurer-Cartan form of G and

Ph : g→h

is the projection onto h then

Ph ◦ ωG
MC = θc ∈ Ω1(G, h)

defines a canonical connection one form on the principal H bundle G→G/H.
The tangent bundle TG/H is canonically isomorphic to G ×

AdH

m. Since TG/H

is an associated bundle of G→G/H, the canonical connection one form θc induces
a covariant derivative ∇c on TG/H. Furthermore, by construction, all G invariant
tensors on G/H are covariantly constant with respect to ∇c. A G-invariant metric
is such a tensor, hence ∇c is automatically a metric connection for any G-invariant
metric on G/H.

The question of whether ∇c is the Levi-Civita connection of a G-invariant metric
requires examining the torsion of ∇c. It turns out that the torsion tensor T (∇c)
vanishes if and only in

[m,m] ⊂ h

that is, if and only if G/H is a symmetric space, see [1] for more details. As a
result, a lot of the Riemannian geometry of symmetric spaces can be understood
from the Lie theory.

By the Cartan decomposition theorem, G/K is a symmetric space. The Levi-
Civita connection of any G invariant metric is therefore the one induced by the
canonical connection on G→G/K. One place this is useful (for higher Teichmüller
Theory) is in understanding the harmonic metric equations associated to a reduc-
tive representation. If Σ is a closed surface, the harmonic map associated to a
representation

ρ : π1(Σ)→G

in Corlette’s theorem [2] is a map h : Σ̃→G/K.
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5. Complex semisimple Lie algebras

This section is mostly from [3]. For this section g will be a complex semisimple
Lie algebra. One key property of such a g is: there exists a maximally commuta-
tive subalgebra h ⊂ g whose adjoint action on g is diagonal and is unique up to
conjugation. By diagonal, we mean the Lie algebra representation ad : h→gl(g)
decomposes g into a direct sum irreducible representations called weight spaces. A
non zero weight for the adjoint action is called a root; the roots form a finite subset
∆ ⊂ h∗ and h acts on itself with weight 0. We have

g = g0 ⊕
⊕

α∈∆

gα.

where g0 = h. The spaces gα are the root spaces, they are defined by

gα = {X ∈ g|adH(X) = α(H)X ∀H ∈ h}.
Some important properties of the root space decomposition include:
1. h(R) = {h ∈ h|α(h) ∈ R ∀α ∈ ∆} is a real form of h.
2. If α ∈ ∆ then nα ∈ ∆ if and only if n = −1.
3. If α ∈ ∆ then dim(gα) = 1.
4. If α,β ∈ ∆ then [gα, gβ ] ⊂ gα+β , in particular [gα, g−α] ⊂ h and < gα, g−α, [gα, g−α] >

form a subalgebra isomorphic to sl(2, C).
5. < ∆ >= h∗

6. The Killing form satisfies B(u, v) = 0 for two root vectors u, v corresponding to
roots α,β ∈ ∆ with α + β .= 0. We also have that B|h and B|(gα ⊕ g−α) are
nondegenerate and B|h(R) is real and positive definite.
The dimension of a Cartan subalgebra is called the rank of g. Property 2 tells

us that if we choose a linear function l : h∗→R with the property l(∆) .= 0, we have
a splitting of ∆ into positive and negative roots, ∆ = ∆+ ∪∆−, here

∆+ = {α ∈ ∆|l(α > 0}.
A positive root α ∈ ∆+ is called simple if it can not be written as a linear combi-
nation (with positive coefficients) of elements of ∆+, we denote the set of simple
roots by Π = {α1, . . . ,αn} ⊂ ∆+. It is clear that all elements of ∆ are linear com-
binations of elements of Π, thus, by property 5 above we know that < Π >= h∗. In
fact Π forms a basis for h∗, and provide us with a canonical basis of

g =< hαi , eα, ẽα > .

Here hαi ∈ h is obtained from the isomorphism h∗→h given by the Killing form
and eα ∈ gα and ẽα ∈ g−α for α ∈ ∆+, are defined so that

< eα, ẽα, [eα, ẽα] = hα >∼= sl(2, C).

This leads us to the definitions of standard complex Borel and parabolic subal-
gebras.

Definition 5.1. The standard Borel subalgebra (or minimal parabolic) with re-
spect to a choice Cartan subalgebra and positive roots, is defined by

b = h⊕
⊕

α∈∆+

gα.

A standard parabolic subalgebra is any subalgebra containing b, a parabolic sub-
algebra is determined by a choice of subset of −Π.
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General Parabolic subalgebras are conjugates of standard ones and parabolic
subgroups are just exponentials of parabolic subalgebras. We will discuss these
more in the real case below.

6. Restricted roots, Iwasawa Decomposition and real parabolic
subgroups

This section is mostly from [5]. The goal of this section is to define parabolic
subgroups of real semisimple Lie groups. To do this we need to introduce restricted
roots and the Iwasawa Decomposition. Parabolic subgroups are defined by the
property that G/P is compact. The main complication is that for a real semisimple
Lie algebra the maximal abelian subalgebra that acts diagonally on g may be too
small to complexify to be a Cartan subalgebra of gC. For split real Lie groups, this
complication disappears.

We start with a real semisimple Lie algebra g with Cartan decomposition g =
k ⊕ p. Let a be the maximal abelian subspace of p, (note exp(a) ∼= (R+)dima)
since the adjoint of X ∈ g with respect to the postive definite form Bθ satisfies
(adX)∗ = −adθX , we see that X is self adjoint if and only if X ∈ p. Thus the set
{adH |H ∈ a} is a commiting family of self adjoint transformations of g. From this
we conclude g is a direct sum of simultaneous eigenspaces, all the eigenvalues being
real.

For λ ∈ a∗ we have

gλ = {X ∈ g|adH(X) = λ(H)X ∀H ∈ a},

if λ .= 0 and gλ .= 0 then λ is called a restricted root. Let Σ denote the set of
restricted roots.

The Lie algebra g admits an orthogonal decomposition g = g0⊕
⊕

λ∈Σ
gλ satisfying

the following:
1. [gλ, gµ] ⊂ gλ+µ

2. θgλ = g−λ hence λ ∈ Σ =⇒ −λ ∈ Σ.
3. g0 = a⊕m orthogonally, where m = Zk(a).
The dimension of a is called the real rank of g, if the real rank is the same as the
rank of g then g is a split real form. For split real forms the dimensions of gλ are
all 1.

6.1. Iwasawa Decomposition. Choose a notion of positivity for the restricted
roots Σ and let Σ+ be the positive restricted roots. Define n =

⊕
λ∈Σ+

gλ, this is

a nilpotent Lie algebra, the Iwasawa decomposition theorem on the level of Lie
algebra’s is the following.

Theorem 6.1. In the notation above, g is a vector space direct sum g = k⊕ a⊕ n.
Here a is abelian, n is nilpotent, a⊕n is solvable subalgebra of g and [a⊕n, a⊕n] = n.

There is an analogous theorem on the level of Lie Groups.

6.2. Parabolic subalgebras and subgroups. A parabolic subgroup of a real
semisimple Lie group is the exponential of a parabolic subalgebra, Q ⊂ G is a par-
abolic subgroup if and only if G/Q is compact and q ⊂ g is a parabolic subalgebra
if and only if qC ⊂ gC is a parabolic subalgebra. Just as in the set up for complex
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semisimple Lie algebras, we can choose a set of positive restricted roots Σ+ ⊂ Σ
and consider the corresponding simple restricted roots.
Definition 6.2. The mininmal parabolic subalgebra (with respect to the choices
made) is the subalgebra

b = g0 ⊕
⊕

λ∈Σ+

gλ.

A general minimal parabolic is one which is conjugate to b.

Definition 6.3. A parabolic subalgebra is a subalgebra containing a minimal par-
abolic.

Let Π ⊂ Σ+ be the subset of simple restricted roots, up to conjugation the
parabolic subalgebras of g are characterized by subsets Π′ ⊂ Π. To see this consider

Γ = Σ+ ∪ {β ∈ Σ|β ∈ span(Π′)},
we get the following parabolic subalgebra from Γ

q = g0 ⊕
⊕

λ∈Γ

gλ.

By flipping our notion of positive to roots, (i.e. the negative roots before are
now the positive roots) we have a similar minimal parabolic subalgebra

b− = g0 ⊕
⊕

λ∈Σ−

gλ.

Similarly corresponding to Π′ ⊂ Π we have −Π′ ⊂ −Π and

−Γ = Σ− ∪ {β ∈ Σ|β ∈ span(−Π′)},
and the corresponding parabolic subalgebra

q− = g0 ⊕
⊕

λ∈−Γ

gλ.

For notational clarity we write q = q+ and b = b+, the intersection

q+ ∩ q− = g0

⊕

{λ∈Σ|λ∈span(Π′)}

gλ

is called the Levi subalgebra of q. By exponentiating we get two parabolics Q+ =
exp(q+) and Q− = exp(q−) called opposite parabolics, the intersection Q+ ∩Q− is
called a Levi subgroup associated to Q.
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