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The point of this note is to summarize the work of T. Barbot and Q.
Merigot on Anosov representations in anti de Sitter geometry, published as
one joint paper [BM], but available on arXiv as two separate papers [Mer]
and [Ba1]. Combined, the work of Barbot and Merigot shows that when the
target group is SO(2, n), the notion of Anosov representation (Labourie [La])
coincides exactly with the notion of quasifuchsian: here the natural space on
which SO(2, n) acts is the Einstein universe Einn−1,1 = Einn, a conformal
Lorentzian manifold which should be thought of as a Lorentzian analogue
of the conformal Riemannian sphere. SO(2, n) also acts on the n+ 1 dimen-
sional anti de Sitter space AdSn,1 = AdSn+1, which is a Lorentzian model
space of constant negative curvature, a Lorentzian analogue of hyperbolic
space. The Einstein space Einn−1,1 is the ideal boundary of AdSn,1, in the
same way that the conformal sphere is the boundary of hyperbolic space.

Let Γ be a cocompact lattice is SO(n, 1). Via the inclusion SO(n, 1) ↪→
SO(n, 2) we obtain a Fuchsian representation of Γ. This representation
preserves a totally geodesic copy of Hn inside AdSn,1; it also preserves the
boundary ∂Hn ⊂ Einn,1, which is a smooth space-like (n − 1)-sphere in
Einn−1,1. A representation ρ : Γ→ SO(n, 2) is quasi-Fuchsian if ρ preserves
an embedded, acausal, n− 1 sphere Λ (the limit set) in Einn−1,1. When we
say that a representation ρ : Γ→ SO(n, 2) is Anosov, we will mean Anosov
in the context of the action of SO(n, 2) on the subspace Y ⊂ Einn × Einn

of pairs of points (v, w) that are acausal, meaning there exists a space-like
path in (the universal cover) of Einn, connecting v to w. The key connection
between the notion of Anosov and that of quasi-Fuchsian comes from AdS
geometry: The limit set Λ ⊂ Ein of a quasi-Fuchsian representation ρ is
the boundary of a domain in AdS whose quotient under ρ is a globally
hyperbolic Cauchy compact (GHC) AdS manifold. The geodesic flow on the
non-wandering space-like unit tangent bundle in this manifold turns out to
be dynamically the same as the geodesic flow on Γ\T 1Hn; this allows us to
construct the Anosov map from T 1(Γ\Hn) to Y.
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Finally, we mention one newer result of Barbot [Ba2], which we will not
discuss here: All deformations of the Fuchsian representation of Γ in SO(2, n)
are quasi-Fuchsian. In other words the component of the Fuchsian represen-
tation consists entirely of Anosov representations. This is well-known due
to Mess in dimension three.

Before starting, a disclaimer: I have left out many of the details (and
perhaps even some important ones!). I only intend to give a vague idea of
the arguments.

1 Definitions of the basic objects

For background on AdS geometry, see [BB] or my thesis (mostly dimension
3). For a nice introduction to the 2 + 1 dimensional Einstein space, see
[BCD+]

Consider the quadratic form

q2,n(u, v, x1, . . . , xn) = −u2 − v2 + x21 + · · ·+ x2n

of signature (n, 2) on Rn+2 = R2,n. Let 〈·|·〉 denote the associated inner
porduct. The anti de Sitter space AdSn+1 = AdSn,1 is defined to be the hy-
perboloid {q2,n = −1} endowed with the metric coming from the restriction
of q2,n. This metric is Lorentzian, meaning that the inner product on each
tangent space has signature (1, n) (one negative eigenvalue and n positive
eigenvalues).

The Einstein universe Einn−1,1 = Einn is the positive projectivization of
the light cone with respect to q2,n:

Einn−1,1 = {q2,n(u, v,x) = 0 : x 6= 0}/R+.

It is topologically S1 × Sn; the diffeomorphism is given by

(u, v,x) 7→
(

(u, v)√
u2 + v2

,
x

‖x||

)
,

where ‖ · ‖ denotes the usual Euclidean norm.
The group SO(2, n) acts on both AdSn,1 and Einn−1,1. In the case of

AdS, its clear that this action is by isometries. Under the identification
Einn,1 = S1 × Sn above, the Lorentzian metric −dθ2 + ds2 is preserved, up
to conformal factor, by SO(2, n). This conformal metric is induced by q2,n.

Let S : Rn+2 \ {0} → Sn+1 denote the quotient by the positive reals
R+. Then S is injective on both AdSn,1 and Einn−1,1 and Merigot denotes
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the images ADSn,1 = S(AdSn,1) and ∂ADSn,1 = S(Einn−1,1). The image of
Einstein space is precisely the boundary of the image of AdS. This allows
us to think of Ein as an ideal boundary of AdS in the same way that the
sphere is the ideal boundary of Hn. The (pushforward of the) metrics work
well together: If pn is a sequence of points in ADS approaching the point p∞
in ∂ADS, then the conformal class of the AdS metric at pn converges to the
(conformal class of the) Einstein metric at p∞. One other important feature
that can be seen directly in this model is that every space-like geodesic
in ADS has two distinct end-points on ∂ADS. Let E1AdSn,1 denote the
unit space-like tangent bundle of AdS, consisting of all tangent vectors with
norm-squared +1. Then, define the two maps `+, `− : E1AdSn,1 → Einn−1,1

taking a tangent vector to its forward and backward endpoints (respectively)
under the geodesic flow. These will be useful later. Henceforth, we will not
distinguish between the two models ADS and AdS, and we will only use the
notation AdS and Ein. Note that some (including me) prefer to take AdS
to be the quotient by the antipodal map of the model defined here.

1.1 Causality

Let M be a manifold with Lorentzian metric g, and let v 6= 0 be a vector
tangent to M at some point. If g(v, v) < 0, then v is called time-like, if
g(v, v) = 0 then v is called light-like and if g(v, v) > 0, then v is called
space-like. This terminology comes from physics (Einstein): paths with
time-like tangents describe the motion of particles; a geodesic with light-like
tangent describes a photon. A hyper-surface with space-like tangents is a
copy of space in the space-time, you could think of it as the slice t = 0,
although in general such a time function t might not extend to the entire
space-time M . The notion of globally hyperbolic means roughly that there
is a global time function t on M . Then, the level sets of t are space-like
hypersurfaces.

In any tangent space, the light-like vectors form a cone which divides
the time-like vectors into two components. We choose one component to
be called future and the other to be called past. This choice can be made
consistently over small patches of the manifold. The manifold is called time-
orientable if future/past can be chosen consistently over the entire manifold.
Even a time-orientable space-time may not have a well-defined notion of
future/past for pairs of points. For example, both Ein and AdS contain
closed time-like curves, so future/past only makes sense in the universal
cover.

Since we wish to deal with rough sets (like limit sets), we need to extend
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the notion of time-like, space-like, light-like, to curves which are not smooth.
Causality notions only make sense in the universal cover; when applied to
a manifold which is not simply connected, lift everything to the universal
cover before applying the definitions. A curve c is called (future) causal if
for every a > b, c(a) is in the future of c(b), meaning that there exists a
smooth curve from c(a) to c(b) with (future directed) time-like or light-like
tangents. A set Λ is called achronal if for any two points of Λ there is no
time-like curve separating those points. A set Λ is acausal if for any two
points of Λ, there is no causal curve separating those points.

In our context, Λ ⊂ Einn will be the image of an n − 1-sphere under
some injective map. In this case:

Lemma 1. Λ is acausal if and only if for all p, q ∈ Λ, the pair (p, q) ∈ Y.

This is not hard to prove. Let ÃdS
n,1

denote the universal cover, and let

Ẽin
n−1,1

denote the boundary of ÃdS (n = 2 is slightly annoying here since

Ẽin is not the universal cover of Ein so lets ignore this case here). Let Λ̃ be a

lift of Λ to Ẽin. If some pair (p, q) /∈ Y, then acausal fails: the span of p and
q gives a light-like geodesic in Einn passing through p and q; this light-like
geodesic generates π1Ein so any lifts p̃, q̃ to Ẽin are connected by the lift
of the light-like geodesic. On the other hand, if all pairs of points p, q ∈ Λ
satisfy (p, q) ∈ Y, then we show Λ is acausal as follows. Let p, q ∈ Λ. By the
assumption (p, q) ∈ Y, span{p, q} is a (1, 1) plane which descends to a space-
like geodesic in AdSn,1. This geodesic is contained in many totally geodesic
hyperbolic planes. To find one, pick a positive vector v in span{p, q}⊥; then
span(p, q, v) has signature (1, 2) and descends to a hyperbolic plane H in
AdSn,1. The boundary ∂H is a space-like curve in Einn passing through p
and q. Now let α be the loop gotten by traveling from p to q along some
path γ inside Λ and then traveling from q back to p along ∂H. Then a
homotopy αt from α to the constant loop can be constructed: αt is the loop
going from p to the point γ(t) (γ(0) = p, γ(1) = q) along γ and going back
to p along ∂Hγ(t) where Hγ(t) is a hyperbolic plane containing the geodesic
from p to γ(t) (chosen continuously in t; here we need that (p, γ(t)) ∈ Y) for

all t). Now lift Λ to Λ̃ ⊂ Ẽin (Λ is simply connected). Then the space-like
curve ∂H lifts to a curve, still spacelike, passing through the lifts of p and q
to Λ̃.
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2 Anosov representations are quasi-Fuchsian

Let P ⊂ SO(2, n) be the stabilizer of an isotropic line. Then, SO(2, n)/P =
Einn is Einstein space. The open orbit Y ⊂ Einn × Einn of the SO(2, n)
action is the subset of pairs of points in Einstein space which are acausally
related. These are exactly the pairs of endpoints of spacelike geodesics
in AdSn+1. We consider now P -Anosov (Merigot calls them Y-Anosov)
representations ρ : Γ → SO(2, n). Let us recall the definition (Labourie).
Consider the unit tangent bundle N of the compact hyperbolic manifold
Γ\Hn, as well as the flat Y-bundle Eρ over N associated to ρ:

Eρ = T 1Hn ×ρ Y.

Denote the geodesic flow on N by φt; the flow lifts to Eρ. Each factor of
Y determines a sub-bundle of TEρ: Let Es denote the span of the tangent
directions to the stable sub-manifold of the geodesic flow on N and the
tangent directions to the first Einn factor (see Spencer’s notes). Let Eu

denote the span of the tangent directions to the unstable manifold of the
geodesic flow on N and the tangent directions to the second Einn factor.
The tangent bundle of Eρ splits as

TEρ = ∆⊕ Es ⊕ Eu

where ∆ is the line bundle tangent to the flow φt.
Then ρ is P -Anosov (Y-Anosov) if there is a φt-invariant section s : N →

Eρ and there exists constants a, b > 0 such that:

• for any vector v in Es over a point p of s(T 1N), and for any t > 0:

‖dpφt(v)‖ ≤ be−at‖v‖

• for any vector v in Eu over a point p of s(T 1N), and for any t < 0:

‖dpφt(v)‖ ≤ beat‖v‖

where ‖ · ‖ is some Riemannian metric (since Γ is cocompact, this definition
is independent of the metric).

Both Merigot and Barbot use an alternate definition of Anosov (see
Merigot Remark 5.4):
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Remark 1 (Merigot Remark 5.4). The Anosov section s is really two ρ-
equivariant maps `+ρ , `

−
ρ : T 1Hn → Einn. An equivalent formulation of the

contraction properties is as follows: There exists a family of Riemannian
metrics g(x,v) depending continuously on (x, v) ∈ T 1Hn and defined in a
neighborhood of both `+ρ (x, v) and `−ρ (x, v) in Einn such that:

• The family is ρ-equivariant: Let w ∈ T`+ρ (x,v) or w ∈ T`−ρ (x,v). Then

gγ(x,v)(dρ(γ)w, dρ(γ)w) = g(x,v)(w,w)

• There exists a, b > 0, such that if w ∈ T`+ρ (x,v) and t > 0, then

gφ
t(x,v)(w,w) ≥ b−1 exp(at)g(x,v)(w,w)

or if w ∈ T`−ρ (x,v) and t > 0 then

gφ
t(x,v)(w,w) ≤ b exp(at)g(x,v)(w,w).

We use this second definition from now on, avoiding explicit reference to
the metrics g(x,v) whenever the intuition is clear.

We now summarize Merigot’s argument showing that Anosov representa-
tions (as above) are quasi-Fuchsian. This direction doesn’t actually involve
very much AdS geometry. In fact the following argument is very general,
and is covered in Spencer’s notes on the basics of Anosov representations.
We repeat it here in this context.

The Anosov section s is really two maps `+ρ , `
−
ρ : T 1Hn → Einn. Let

(x, v) ∈ N lie on the closed geodesic corresponding to γ ∈ Γ.

• Both `+ρ (x, v), `−ρ (x, v) must be fixed points of ρ(γ), and they must
be distinct and acausally related. It follows that ρ(γ) preserves the
space-like geodesic in AdSn+1 with endpoints `+ρ (x, v), `−ρ (x, v).

• It follows from the previous remark that `+ρ (x, v) is an attracting fixed
point of ρ(γ) and that `−ρ (x, v) is a repelling fixed point.

• A basic projective geometry argument implies that `+ρ (x, v) (respec-
tively `−ρ (x, v)) is the unique attracting (respectively repelling) fixed
point of ρ(γ).

Using these observations, Merigot proves

Proposition 2 (Merigot Prop 5.8). Let α : T 1Hn → T 1Hn be the map which
flips the direction of tangent vectors: α(x, v) = (x,−v). Then `+ρ = `−ρ ◦ α.
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The statement is true when (x, v) lies on a closed geodesic by the above
observations. The proposition then follows by density of closed geodesics.

Now, define Λ = `+ρ (N) = `−ρ (N). Since `+ρ (or `−ρ ) is flow invariant, we
can really think of it as an equivariant map ∂Hn → Einn since the value only
depends on the forward endpoint of the geodesic flow of (x, v). Thought of in
this way, we argue that `+ρ is injective and its image is acausal. For consider
two points (x, v) and (y, w) of T 1Hn with distinct (forward) endpoints on
∂Hn. There is a third unit tangent vector (z, u) whose forward endpoint is
the forward endpoint of (x, v) and whose backwards endpoint is the forward
endpoint of (y, w). Then, using the proposition:

`+ρ (x, v) = `+ρ (z, u)

`+ρ (y, w) = `+ρ (z,−u) = `−ρ (z, u).

Since (`+ρ (z, u), `−ρ (z, u)) ∈ Y it follows that `+ρ (x, v) and `+ρ (y, w) are distinct
and acausally related. This proves that Λ is an acausal embedded n − 1
sphere, and so ρ is quasi-Fuchsian.

3 Globally hyperbolic AdS space-times

Now to the converse result of Barbot, that quasi-Fuchsian representations
are Y-Anosov. We give only a vague summary. The strategy involves the
geometry of globally hyperbolic AdS space-times.

Consider an acausal subset Λ of Einn−1,1. Let E(Λ) denote the points of
AdSn,1 that can be joined to all points of Λ by a space-like geodesic. E(Λ) is
called the invisible set. It is open. Now, suppose ρ : Γ→ SO(2, n) is quasi-
Fuchsian and Λ is the acausal n − 1 sphere preserved by the image of ρ.
Then M = ρ(Γ)\E(Λ) is a globally hyperbolic maximal compact (GHMC)
AdS manifold: It is globally hyperbolic with compact space-like level sets,
and it is maximal with respect to inclusion (Mess). I won’t get into the
details here, but the assosiation (ρ,Λ) 7→M is a bijection (Mess [Mes]).

3.1 The unit tangent bundle

Consider the space like unit tangent bundle E1E(Λ). Define the non-wandering
set N (Λ) to be the subset of points (x, v) of E1E(Λ) such that the space-like
geodesic passing though x tangent to v has both endpoints in Λ; in other
words `+(x, v), `−(x, v) ∈ Λ. The non-wandering set is of course ρ invariant.
The basic idea is that N (Λ) gives the connection between the dynamics of
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the geodesic flow on Γ\Hn and the action of ρ(Γ) on Λ. Specifically, Barbot
proves:

Proposition 3 (Barbot Proposition 4.19). There is a ρ-equivairant homeo-
morphism f : T 1Hn → N (Λ) mapping orbits of the geodesic flow φt on T 1Hn

to orbits of the space-like geodesic flow φtN on N (Λ).

To prove this, the first step is to show the existence of a ρ-equivariant
homeomorphism j : ∂Hn → Λ. This involves some AdS geometry: the group
Γ is quasi-isometric to the convex hull Conv(Λ) of Λ in AdSn,1. Then both
T 1Hn and N (Λ) are R-bundles over ∂Hn×∂Hn \D ∼= Λ×Λ\D (where D is
the diagonal) and j×j gives an equivalence of the orbit spaces. Construction
of f is a standard exercise.

From the proposition, we get two flow invariant maps `+ρ , `
−
ρ : T 1Hn → Λ

defined by first applying f and then following the geodesic flow in N (Λ) for-
wards and backwards to Λ. These are of course ρ-equivariant. The focus
now is demonstrate the contraction properties of Remark 1 above. The
metric g(x,v) at (near) `+ρ (x, v) is defined as the visual metric from the point

x ∈ AdSn,1. To make it Riemannian, we use Wick rotation. Specifically,
there is a ρ-equivariant time-like vector field V defined in the convex core
Conv(Λ) (which is the projection of N (Λ) to AdS); One may define a Rie-
mannian metric on Conv(Λ) by using the AdS metric on the orthogonal to
V and then flipping the sign of 〈V, V 〉; projecting this metric (at x) onto
the boundary Einn gives a Riemannian metric in a neighborhood of `+ρ (x, v)
(in fact defined on the entire space-like visual “sphere” of x, a copy of de
Sitter space dSn in Einn centered around x). Some fiddling is needed to
make sure this is equivariant. Barbot shows that this metric satisfies the
contracting properties. A key step is to show that for a sequence of group
elements γn converging to a point in the Gromov boundary ∂Γ, the ele-
ments ρ(γn) ∈ SO(2, n) always have un-balanced distortion, meaning (most
of) Einstein space is pushed toward one attracting fixed point.
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