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Abstract

These informal notes are a brief summary of the talk I gave, with the same title, at the Workshop
on Higher Teichmüller-Thurston theory, which took place in Northport Maine in the last week of June
2013. Use at your own risk.

1 Informal introduction

Anosov representations were introduced by Labourie [Lab] and describe so-called ‘Anosov structures’. The
basic idea is that, rather than encoding a sort of geometric structure on your manifold, such representations
encode a type of dynamical structure that is analogous to that of an Anosov flow. This turns out to be a
more flexible type of structure that is applicable in a wider context.

After defining the concept, Labourie went on to establish various results about Anosov representations.
In particular, he showed that representations in Hitchin components are Anosov and used this to extend
the known results about Hitchin components. For example, he showed that the mapping class group acts
property on the Hitchin component, and that all representations in the Hitchin component are discrete,
faithful, and purely loxodromic.

Taking the idea behind Anosov representations further, Guichard and Wienhard [GW] expanded the
notion from Anosov structures on manifolds to representations of arbitrary word hyperbolic groups and
showed that the definition may be reformulated in terms of a pair of Anosov maps from the boundary of the
word hyperbolic group into certain compact homogeneous spaces. Working in this framework, they showed,
among other things, that the set of Anosov representations is open in the representation variety.

2 Motivation

Upon a first encounter with the topic, the definition of Anosov representations can appear quite opaque
making it difficult to perceive the idea behind the concept. In attempts to circumvent this frustration,
in this section I’ll discuss a motivational picture that I hope will help illuminate the definition of Anosov
representations in §3.

2.1 Anosov flows

Before getting into the specifics of Anosov representations, let us first recall the motivating picture of Anosov
flows. For a more detailed discussion of Anosov flows and their properties, see the article [Pla] by Plante
and the references therein.

Let M be a compact Riemannian manifold equipped with a C1–flow φt : M →M . This is said to be an
Anosov flow if there is a φt–invariant splitting

TM = Es ⊕ Eu ⊕ ET
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of the tangent bundle TM into subbundles Es, Eu, and ET (so each bundle must be invariant under the
derivative Dφt) that satisfy

1. ET is a line bundle that is tangent to the flow φt,

2. Eu is expanding, that is, there exist constants A > 0, µ > 1 so that for all t ∈ R and v ∈ Eu we have

‖Dφt(v)‖ ≥ Aµt‖v‖,

3. Es is contracting, that is, there exist constants B > 0, λ < 1 so that for all t ∈ R and v ∈ Es we have

‖Dφt(v)‖ ≤ Bλt‖v‖.

(Above, the norms of vectors are calculated with respect to the Riemannian metric.) We remark that since
M is compact, conditions (2) and (3) are independent of the chosen metric; thus being Anosov is truly a
property of the flow itself.

In the case of an Anosov flow, it is known that the bundles Eu and Es are in fact integrable, meaning
that they are tangent to the leaves of C1 foliations Fu and Fs of M .

Example 2.1. The canonical example of an Anosov flow is the geodesic flow on (the unit tangent bundle of)
a compact negatively curved Riemannian manifold. To briefly see why such a flow is Anosov, let us consider
the case of a closed surface S equipped with a hyperbolic metric. Then the universal cover S̃ is identified
with the Poincaré upper half plane H2 and the unit tangent bundle T 1(S̃) with PSL(2,R). For concreteness,
let’s identify I ∈ PSL(2,R) with the vertical tangent vector at the point i ∈ H2.

Now, the tangent space TI(PSL(2,R)) is the Lie algebra sl(2,R) of 2× 2 traceless matrices, which has a
basis given by

GI =
(

1 0
0 −1

)
, XI = ( 0 1

0 0 ) , YI = ( 0 0
1 0 ) .

These generate left-invariant vector fields G, X, and Y on PSL(2,R) (which thus descend to vector fields on
T 1(S)) which induce a splitting of T (PSL(2,R)) as the sum of 3 line bundles EG, EX , and EY .

Exponentiating in the direction of these basis vectors gives the matrices

gt := exp(tGI) =
(
et/2 0

0 e−t/2

)
, xt := exp(tXI) = ( 1 t

0 1 ) , yt := exp(tYI) = ( 1 0
t 1 ) .

Multiplication on the right by gt defines a flow on PSL(2,R) that is parallel to the vector field G (and
similarly for xt and yt); in fact gt is exactly the geodesic flow on T 1(H2), and xt and yt are the horocycle
flows. Since these flows commute with the left action on π1(S) on PSL(2,R), they descend to flows on T 1(S).

With this concrete description of gt, it is easy to check that the geodesic flow is Anosov with respect to the
splitting T (PSL(2,R)) = EG⊕EX⊕EY . Indeed, EG is tangent to the flow, and the facts that xsgt = e−tgtxs
and ysgt = etgtys show that the flow gt is contracting and expanding on EX and EY , respectively.

2.2 Philosophical ramblings

When studying representation spaces Hom(Γ, G), a goal is often to understand what sort of information
these representations encode. For example, when Γ = π1(S) for a closed surface S and G = PSL(2,R), the
discrete faithful representations in Hom(Γ, G) exactly encode hyperbolic structures on S. The question then
arises, what sort of structure may be encoded by a representation into, for example, a larger Lie group?

We have seen in Example 2.1 that if a representation π1(S) → PSL(2,R) defines a hyperbolic structure
on S, then via the geodesic flow on T 1(S) we actually have the extra structure of an Anosov system. In
fact, as Example 2.1 illustrated, the distributions comprising the Anosov system in fact came from the Lie
group PSL(2,R) itself. Now, if we change PSL(2,R) into a larger-dimensional Lie group G, it becomes
quite difficult for a representation π1(S)→ G to encode a geometric structure on S—any ‘developing map’
from S̃ to the symmetric space G/K could not be a local homeomorphism because dimensions would not
match up, and so we are left searching for other candidate G–spaces to model the desired geometry on S.
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Labourie’s insight in [Lab] was that, in spite of these difficulties, perhaps such a representation π1(S)→ G
could still encode some sort of dynamical structure on S in the same way that we saw the structure of the
Lie group PSL(2,R) lead to an Anosov flow on T 1(S) in Example 2.1. This idea turned out to work, and
the added dynamical structure allowed Labourie and others to prove new results about the representation
spaces Hom(π1(S), G).

3 Anosov representations

Let G be a semisimple Lie group, and let (P+, P−) be a pair of opposite parabolic subgroups (see the
notes [Col] from Brian Collier’s talk on semisimple Lie groups for the definition and properties of parabolic
subgroups). Then the quotients F± = G/P± are compact homogeneous spaces (since P± are parabolic).
We also consider the homogeneous space X = G/L, where L = P+ ∩ P−.

If we let G act diagonally on F+ × F−, then L is exactly the stabilizer of (eP+, eP−) and so we may
identify X = G/L with an orbit in F+ × F−. In fact this is the unique open orbit. From the product
structure on F+ × F−, the orbit X inherits two G–invariant distributions E±, where the vector space over
a point x = (x+, x−) ∈ X ⊂ F+ × F− is E±x = Tx±F±. It follows that any X–bundle also comes equipped
with such a pair of distributions, which we again call E±.

Example 3.1. What exactly are the spaces G/P± and G/L? Let’s take a look at these in our favorite setting
where G = PSL(2,R). In this case, the Borel subgroup B is the subgroup of upper triangular matrices. Thus
there are no proper subgroups between G and B and we are forced to take P+ = B and P− as the subgroup
of lower triangular matrices.

Again identifying I ∈ G with the vertical-pointing tangent vector at i ∈ H2, we find that P+ ≤ G is
exactly the set of vertical-pointing tangent vectors in T 1(H2). Indeed, using the notation of Example 2.1,
every element of P+ may be expressed as a product gtxs, and both of these flows preserve the set of vertical
tangent vectors. In particular we see that all elements of P+ point towards the same boundary point in ∂H2

(namely ∞). Multiplying this picture by g ∈ G, we find that all vectors in gP+ point towards the boundary
point g · ∞ ∈ ∂H2. Thus we have a natural identification of G/P+ with the circle S1 = ∂H2. Similarly all
vectors in P− point away from 0 ∈ ∂H2, and so we again have an identification of G/P− with ∂H2. Finally,
G/L may be identified with the space of oriented geodesic lines in H2, which may equivalently be realized
as the set

∂(H2)(2) = ∂H2 × ∂H2 \ {(t, t) | t ∈ ∂H2}.

This same basic picture holds for every rank–1 Lie group. That is, whenever G is a rank–1 semisimple
Lie group, the only opposite parabolic subgroups are the Borel subgroup B+ and its opposite B−, and for
both of these there is a natural identification of G/B± with the boundary of the symmetric space G/K.
When G has higher rank, there are more possibilities for the opposite parabolic subgroups (P+, P−) and
the quotients G/P± can be identified with certain proper subspaces of the boundary of the symmetric space
G/K.

3.1 For Riemannian manifolds

Let N be a closed negatively curved Riemannian manifold, and let M = T 1(N) be its unit tangent bundle.

We then have the universal cover Ñ and its unit tangent bundle M̂ = T 1(Ñ), which is a Γ = π1(N)–cover

of M . Let φt denote the geodesic flow on M̂ ; this descends to the geodesic flow (also denoted φt) on M .

Now suppose that we have a representation ρ : Γ → G. The product M̂ × X becomes a Γ–space, where
Γ acts diagonally on M̂ by deck transformations and on X via the representation ρ. We denote the quotient
under this action by

Xρ := M̂ ×ρ X = Γ\(M̂ ×X ).

The projection of M̂ × X onto the first factor descends to a map Xρ → M giving Xρ the structure of an

X–bundle over M . Moreover, there is a natural flat connection on the bundle M̂ × X → M̂ (coming from
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the product structure) and this gives us a flat connection on Xρ. (Recall that a connection on a bundle is
simply a choice of a way to lift any smooth path in the base to the total space. Flat here just means that
the holonomy is locally trivial, that is, each point in the base has a neighborhood on which all closed loops
lift to closed loops in the total space). Additionally, we emphasize that Xρ comes equipped with two vector
bundles E± → Xρ (in fact, these are distributions E± ≤ TXρ) coming the aforementioned distributions E±

on the fiber X .
Now here is an important point: The flow φt on M̂ lifts to a flow on M̂×X defined by ψt(m,x) = (φtm,x).

Furthermore, this flow is invariant under the action of Γ, and so defines a flow (also called ψt) on Xρ which
lifts φt. Notice that the product structure gives us a splitting of the tangent bundle

T (M̂ ×X ) = TM̂ ⊕ TX ,

and that ψt preserves this splitting (meaning that the derivative Dψt preserves each subbundle). In addition,
Dψt acts trivially on TX , so the flow also preserves each of the distributions E± ≤ TX . To summarize, the
flow φt on M lifts to a flow ψt on Xρ that preserves the two distributions E±.

Definition 3.2 (Anosov representation). In the situation described above, a representation ρ : π1(N) =
Γ→ G is called (P+, P−)–Anosov if

1. the bundle Xρ admits a section σ : M → Xρ that is flat along flow lines (i.e., thinking of a flowline
as a path h : [0, 1] → M , the composition of this with the section σ must agree with a lift of h to Xρ
determined by the flat connection), and

2. the lifted action of φt (which is determined by the action of ψt) on σ∗E+ (resp. σ∗E−) is expanding
(resp. contracting) (see §2.1 for definitions of these terms).

Remark 3.3. In the definition of an Anosov flow (see §2.1), the expanding and contracting properties were
measured with respect the Riemannian norm on each tangent bundle. In the setting of Definition 3.2 the
bundles σ∗E± are not subbundles of the tangent bundle TM , so we don’t use the Riemannian metric here.
Rather, property (2) above just means that there is some continuous family of norms (‖ · ‖m)m∈M on the
fibers of the bundles σ∗E± so that the expanding/contracting properties are satisfied. Again, since M is
compact this does not depend on the choice of the family of norms.

3.2 The equivariant maps

Let us further study the structure of an Anosov representation ρ : Γ → G, where as above Γ = π1(N). A

section σ of the bundle Xρ →M is equivalent to a ρ–equivariant σ̂ : M̂ → X , and it is easy to see that σ is
‘flat along flow lines’ if and only if σ̂ is φt–equivariant. Such a map may instead be considered to be defined
on the space

M̂/φt = ∂Ñ (2) = ∂Ñ × ∂Ñ \ {(t, t) | t ∈ ∂Ñ}
of ordered pairs of distinct boundary points of Ñ . Thus the section σ : M → Xρ in the definition of an
Anosov representation is in fact equivalent to a pair of maps

σ̂ = (ξ+, ξ−) : ∂Ñ (2) → X ⊂ F+ ×F−.

Furthermore, the contracting property of the Anosov representation implies that ξ+ : ∂Ñ (2) → F+ in fact
only depends on the first coordinate, that is, it factors through the projection ∂Ñ (2) → ∂Ñ onto the
first factor. Similarly ξ− factors through the projection onto the second factor. Thus from an Anosov
representation we obtain a pair of ρ–equivariant maps

ξ± : ∂Ñ → F±.

These maps are called the Anosov maps associated to the Anosov representation. Conversely, given such
maps, one may recover the section σ : M → Xρ, and the properties imposed on σ in Definition 3.2 can be
reformulated in terms of these Anosov maps.
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In summary, the definition of a (P+, P−)–Anosov representation ρ : π1(N)→ G may be reformulated in
terms of the existence of continuous ρ–equivariant maps ξ±∂Ñ → G/P± satisfying certain properties which
are analogous to those in Definition 3.2 above; see [GW, Proposition 2.7] for details.

3.3 For hyperbolic groups

Whereas Labourie originally formulated the notion of Anosov representations in the setting of negatively
curved manifolds (as described in § 3.1 above), Guichard and Wienhard [GW] extended this notion to
representations ρ : Γ→ G of an arbitrary word hyperbolic group Γ.

The key in this definition is to replace the space (M̂, φt) with an appropriate ‘flow space’ for the hyperbolic

group. Such a space, which we will denote Γ̂, was introduced by Gromov [Gro] and further developed by
Champetier [Cha], Mineyev [Min] and others. This space comes equipped with an action by the group
Γ × R o (Z/2Z), where we should think of Γ as acting by deck transformations, the R as a ‘geodesic flow’,

and the Z/2Z as reversing direction. In particular, every orbit Γ → Γ̂ is a quasi-isometry, the R–orbits

R→ Γ̂ are quasi-geodesics, and the induced map

Γ̂/R→ ∂Γ̂(2) ∼= ∂Γ(2) = ∂Γ× ∂Γ \ {(t, t) | t ∈ ∂Γ}

is a homeomorphism.
While one does not have all the nice manifold machinery in this setting, given a representation ρ : Γ→ G,

one can nevertheless consider either ρ–equivariant maps ξ± : ∂Γ → F± or sections of the bundle Xρ =

Γ̂×ρ X → Γ\Γ̂ that are flat along flow lines. In either of these settings, one can then formulate the criterion
for being (P+, P−)–Anosov in terms of expanding/contracting properties that are directly analogous to those
considered in §§3.1–3.2 above. For details, see §2.3 of [GW].

4 L–Cartan projections

Given a hyperbolic group Γ and a representation ρ : Γ → G, we again form the associated flat bundle
Xρ = Γ̂ ×ρ X . When attempting to verify whether ρ satisfies the definition of an Anosov representation, it

is often difficult to check the expanding/contracting properties because any candidate section σ : Γ\Γ̂→ Xρ
must be flat, and therefore effectively ‘constant’, along flowlines. To aid in this task, Guichard and Wienhard
introduce the tool of L–Cartan projections:

Recall that up to conjugacy, every pair of opposite parabolic subgroups is determined by choosing some
subset of the simple roots in a root system. In particular there are not so many choices for the parabolic
subgroups P±. Going forward, let’s focus on the parabolic subgroups P± = P±Θ determined by such a subset
Θ of the simple roots ∆.

Recall that L = P+ ∩ P− is the common Levi component of our parabolic subgroups. We consider
its Weyl chamber a+

L , which can be viewed as a subalgebra of the Cartan subalgebra a of g. Specifically,
a+
L = {a ∈ a | α(a) > 0, for all α ∈ Θ} (recall Θ is a subset of the dual Lie algebra a∗).

Let M be the maximal compact subgroup of L, and set Y = G/M . Given our representation ρ : Γ→ G,

we can then form the flat bundle Yρ = Γ̂ ×ρ Y, which is an L/M–bundle over Xρ. By lifting a candidate

section σ : Γ\Γ̂ → Xρ to this larger bundle, one obtains a refined section β : Γ\Γ̂ → Yρ which is no longer

‘constant’ along flowlines. Because the composition of the flowline through m ∈ Γ\Γ̂ with β actually moves
in the fiber Y = G/M , one may look at the change between β(m) and β(φtm) and measure the Cartan
projection of this change. This projection is naturally an element of the Weyl chamber a+

L . In this way, one
obtains maps

µ± : Γ̂× R→ a+
L

which are termed the L–Cartan projections of σ. Then for (m, t) ∈ (Γ\Γ̂)× R, one may define

A±(m, t) = min
α∈∆\Θ

α(µ±(m̂, t)).
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The key here is that these numbers really aren’t all that complicated or too difficult to work with. Using
these tools, the process of checking for an Anosov representation reduces to checking a few eigenvalues:

Proposition 4.1 (Prop 3.16 of [GW]). Let ρ : Γ→ G be a representation, let σ be a section of Xρ which is
flat along R–orbits, and let A± be as above. The following are equivalent:

1. σ is an Anosov section (and so ρ is a (P+, P−)–Anosov representation).

2. There exist positive constants C, c such that for all t ≥ 0 and m ∈ Γ\Γ̂ one has A+(m, t) ≥ ct−C and
A−(m,−t) ≥ ct− C.

3. There exist positive constants C, c such that for all t ≥ 0 and m ∈ Γ\Γ̂ one has A+(m, t) ≥ ct− C.

4. limt→∞ infm∈Γ\Γ̂A+(m, t) =∞.

5 Basic properties

One can show that if you are given an Anosov representation ρ : Γ → G, then the corresponding Anosov
maps ξ± : ∂Γ → F± are unique (that is, there is just one choice of section σ : Γ\Γ̂ → Xρ that will be flat
along flow lines and satisfy the expanding/contracting properties).

This uniqueness, together with the density of fixed points of non-torsion γ ∈ Γ in ∂Γ imply that a
representation ρ : Γ→ G is Anosov if and only if the same holds for the restriction to a finite index subgroup
Γ′ < Γ, or for the composition π ◦ρ with a covering π : Ĝ→ G of Lie groups (where you choose the parabolic
subgroups compatibly).

Here are some other basic properties of Anosov representations:

• Every Anosov representation ρ : Γ→ G is a quasi-isometric embedding; in particular:

– ker(ρ) is finite,

– ρ(Γ) ≤ G is discrete, and

– ρ is well-displacing (meaning that γ and ρ(γ) have uniformly comparable translation lengths)

• For a fixed parabolic subgroup P < G, the set of P–Anosov representations in Hom(Γ, G) is open.

• When G has rank one, there is exactly one conjugacy class of parabolic subgroups P < G (so we
can unambiguously talk about a representation begin Anosov), and the following are equivalent for a
representation ρ : Γ→ G:

– ρ is Anosov

– there exits a continuous, equivariant, and injective map ξ : ∂Γ→ G/P

– ρ is a quasi-isometry

– ker(ρ) is finite and ρ(Γ) is convex convex cocompact (i.e., acts cocompactly on some convex subset
of the symmetric space G/K).

Finally, various well-studied types of representations are Anosov, such as maximal representations and
representations in the Hitchin component.
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