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SEMISIMPLE LIE GROUPS

BRIAN COLLIER

1. Outiline

The goal is to talk about semisimple Lie groups, mainly noncompact real semisim-
ple Lie groups. This is a very broad subject so we will do our best to be concise
and cover just what we need to discuss the Cartan decomposition theorem, par-
abolic subgroups and associated symmetric spaces. To do this we need to first
introduce some notation and review a lot of Lie algebra theory, the sources I have
used are [1] [3] [5] [4] [6]. Here is a general outline of what will be covered.
1. General set up
2. Real forms, Cartan involutions and Cartan Decomposition Theorem
3. Some facts about the symmetric space G/K.
4. Complex semisimple Lie algebras
5. Restricted roots, Iwasawa Decomposition and real parabolic subgroups
The talk will have many examples even though this write up does not. Very little
will be proven.

2. General Set up

Let G be a Lie group, left translation gives rise to a finite dimensional Lie
subalgebra of the Lie algebra of vector fields on G with Lie bracket, this the Lie
algebra of left invariant vector fields. If Lg : G→G denotes left translation by g ∈ G
then a vector field X ∈ (Γ(TG)) is left invariant if dLg(X) = X for all g ∈ G, i.e.
∀g ∈ G and ∀ h ∈ G, we have dLg(X(h)) = X(g · h).

The set of left invariant vector fields is closed under Lie bracket, making it into
a Lie subalgebra which we denote by g ⊂ Γ(TG). Since every left invariant vector
field is determined by its value at a single point it follows that g ∼= TgG for any
g ∈ G, we therefore identify g with the tangent space at the identity, g = TeG.

The bracket on TeG is defined by taking the Lie bracket of the associated left
invariant vector fields and evaluating it at the identity. With this description of
the Lie algebra we get a natural description of the exponential map, exp : g→G by
flowing along the left invariant vector fields associated to g.

2.1. Lie algebras. This section is mostly from [6]. Given a finite dimensional Lie
algebra g over K = R or C we get a natural representation of

ad : g→gl(g)

defined by
adX(Y ) = [X, Y ]

(the fact that it is a representation follows from the Jacobi identity). The image of
ad

adg ⊂ der(g) ⊂ gl(g)
1
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is, by definition, the ideal of inner derivations in the Lie algbera der(g) of derivations
on g.

For every X ∈ g we have exp(adX) ⊂ Aut(g) ⊂ GL(g), the image of exp in
Aut(g) is called the group of inner automorphisms and will be denoted Int(g). In
fact, the Lie subalgebras adg ⊂ der(g) are the tangent Lie algebras of Int(g) ⊂
Aut(g).

If G is a Lie group then G acts on itself via inner automorphisms. That is, if
αg : G→G is defined by

αg(h) = g · h · g−1

we get a representation Ad : G→Aut(g) ⊂ GL(g) of G in g given by Adg = d(αg)(e).
The Lie algebra representation corresponding to Ad (i.e. d(Ad)(e)) is the previously
mentioned ad. The image of Ad, denoted AdG, is called the adjoint group of G. It
is the Lie group with lie algebra g and trivial center.

We will mainly be interested in semisimple Lie algebras and Lie groups. A Lie
group is called nilpotent, solvable, reductive, semisimple or simple if its Lie algebra
has this property. We begin with a few definitions.

Definition 2.1. A Lie algebra g is simple if it is nonabelian and contains no
nontrivial ideals.

Semisimple Lie algebras are direct sums of simple Lie algebras. This is usu-
ally something that is proven and not taken as a definition. To properly define
semisimple Lie algebras we need to first define solvable Lie algebras.

Definition 2.2. Let g be a Lie algebra, let g1 = [g, g] and define gj = [gj−1, gj−1]
inductively, g is called solvable if the series

g ⊃ g1 ⊃ g2 ⊃ . . .

terminates.

The standard example of a solvable Lie algebra is the Lie algebra of upper
triangular matrices.

Definition 2.3. Let g be a Lie algebra, let g1 = [g, g] and define gj = [g, gj−1]
inductively, g is called nilpotent if the series

g ⊃ g1 ⊃ g2 ⊃ . . .

terminates.

The standard example of a nilpotent Lie algebra is the Lie algebra of strictly
upper triangular matrices.

Definition 2.4. A Lie algebra g is semisimple if it contains no nonzero solvable
ideals.

Another useful criterion for semisimplicity was given by Cartan using the Killing
form. The representation ad allows us to define an Int(g) invariant symmetric
bilinear form called the Killing form,

Bg : g× g→K,

defined by
Bg(X,Y ) = Tr(adxady).

Theorem 2.5. Lie algebra is semisimple if and only if Bg is nondegenerate.
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From this we see that semisimple Lie algebras have trivial centers. One key
property of semisimple Lie algebra’s is that every finite dimensional representation
splits as a direct sum of irreducible subrepresentations. The converse is not true,
for instance g(n, R) has the property that every finite dimensional representation
splits as a direct sum of irreducible subrepresentations; but it is not semisimple (it
has a center). This leads us to the slightly more general notion of a reductive Lie
algebra

Definition 2.6. A Lie algebra is reductive if it is of the form z(g)⊕ [g, g]. Alterna-
tively, a Lie algebra is reductive if and only if every finite dimensional representation
splits as a direct sum of irreducibles.

3. Real forms, Cartan involutions and Cartan Decomposition
Theorem

This section is mostly from [5] and [6]. As mentioned at the beginning, we are
mainly interested in real semisimple Lie groups and Lie algebra’s. However, the
structure theory of complex semisimple Lie algebras is simpler and has many nice
properties. To go from complex Lie algbera’s to real Lie algebras we need to discuss
real forms. First, note that if g is a real Lie algebra then

g⊗ C ∼= g⊕ ig

is a complex Lie algebra, note also that g is semisimple if and only if g ⊗ C is. In
the decomposition

g⊗ C = g⊕ ig,

g is the fixed points of the conjugate linear involution of conjugation, this leads us
to the definition of a general real form.

Definition 3.1. Let g be a complex Lie algebra and

σ : g→g

a conjugate linear involution, σ defines a decomposition

g = g+ ⊕ g−

of g into its +1 and −1 eigenspaces. The subalgebra g+ is called a real form of g.

If g+ ⊂ g is the real form coming from involution σ then, since σ is conjugate
linear, it has the property g+ ⊗ C ∼= g.

Here are some definitions and facts we will need:
1. A Lie algebra is called compact if and only if it is the Lie algebra of a compact

Lie group.
2. It is a theorem that a Lie algebra is compact if and only if it admits an invariant

scalar product.
3. In the semisimple case the Killing form, B, is negative definite if and only if the

Lie algebra is compact, in which case −B provides an invariant scalar product.
4. Complex semisimple Lie algebra’s have two special types of real forms; a compact

real form and a split real form both of which are unique up to conjugation.
5. The compact real form is a real form g+ ⊂ g that is a compact Lie algebra.

We will denote the compact real involution by σ, and denote the +1 eigenspace
of σ by u. Then

g = u⊕ iu,
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and the Killing form is negative definite on u and positive definite on iu. If G is a
complex semisimple Lie group with Lie algebra g, then exp(u) is a maximal compact
subgroup of the complex Lie group G.

3.1. Cartan Decomposition on Lie algebra level.

Definition 3.2. Let g be a real Lie algebra, an involution θ : g→g is called a
Cartan involution if the symmetric bilinear form Bθ(X,Y ) = −B(X, θ(Y )) is pos-
itive definite.

Every real semisimple Lie algebra has a Cartan involution, this is a consequence
of the existence of compact real forms for complex semisimple Lie algebras. To see
this, let g be a real semisimple Lie algebra and

gC ∼= g⊕ ig

be its complexification, let τ be the conjugation on gC, giving real form g. Let
σ : gC→gC be a compact real form so that τσ = στ , (such a compact form always
exists).

Claim 3.3. (τσ) = θ is a Cartan involution when restricted to g.

Proof. The involution θ defines an eigenspace decomposition of gC = gC
+⊕gC

−. Since
θ commutes with σ and τ, both real forms u and g are stable under θ. Thus we
have the eigenspace decompositions

g = g+ ⊕ g−

u = u+ ⊕ u−.

Call g+ = k and g− = p, note that θ coincides with σ on g, so k = u+ and p = iu−.
We have the following decompositions:

g = k⊕ p

u = k⊕ ip.

It is now straightforward to check that θ defines a Cartan involution. !
We call a choice of such a involution θ and its corresponding decomposition

g = k⊕ p a Cartan Decomposition.
Note for a Cartan decomposition g = k⊕ p we have

[k, k] ⊂ k [k, p] ⊂ p [p, p] ⊂ k

It follows that the Cartan decomposition is orthogonal with respect to both B and
Bθ. The Killing form B is negative definite on k and positive definite on p, thus
k ⊂ g is a maximal compact subalgebra. If G is a semisimple Lie group with Lie
algebra g, then exp(k) = K ⊂ G is a maximal compact subgroup. Thus a Cartan
decomposition gives a AdK invariant orthogonal splitting g = k⊕ p.

3.2. Cartan Decomposition on Lie group level. The Cartan decomposition
theorem gives a decomposition of a real semisimple Lie Group G with respect to
a maximal compact subgroup. We will not prove the theorem, however during the
talk we will give some examples.

Theorem 3.4. Let G be a semisimple Lie group, let θ be a Cartan involution of g,
let g = k⊕ p be the corresponding Cartan decomposition, and let K be the analytic
subgroup of G with Lie algebra k. Then
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1. There exists a Lie group involutative automorphism Θ of G with differential θ.
2. The subgroup of G fixed by Θ is K
3. The mapping K × p→G defined by (k, X) +→ (kexp(X)) is a diffeomorphism.
4. K is closed and contains the center of G.

Note that this theorem generalizes the polar decomposition of invertible matri-
ces. Notice also that this decomposition is not a decomposition into subgroups, as
exp(p) ⊂ G is not a subgroup.

4. The symmetric space G/K

This brief section is mostly from [1]. Let H ⊂ G be a closed subgroup and
suppose g admits a decomposition

g = h⊕m

that is AdH invariant and orthogonal with respect to a G-invariant metric. By the
results in the previous section, if K ⊂ G is a maximal compact subgroup then g
admits such a decomposition g = k⊕ p.

The Lie group G is the total space of a principal H bundle G→G/H. If

ωG
MC ∈ Ω1(G, g)

is the (left) Maurer-Cartan form of G and

Ph : g→h

is the projection onto h then

Ph ◦ ωG
MC = θc ∈ Ω1(G, h)

defines a canonical connection one form on the principal H bundle G→G/H.
The tangent bundle TG/H is canonically isomorphic to G ×

AdH

m. Since TG/H

is an associated bundle of G→G/H, the canonical connection one form θc induces
a covariant derivative ∇c on TG/H. Furthermore, by construction, all G invariant
tensors on G/H are covariantly constant with respect to ∇c. A G-invariant metric
is such a tensor, hence ∇c is automatically a metric connection for any G-invariant
metric on G/H.

The question of whether ∇c is the Levi-Civita connection of a G-invariant metric
requires examining the torsion of ∇c. It turns out that the torsion tensor T (∇c)
vanishes if and only in

[m,m] ⊂ h

that is, if and only if G/H is a symmetric space, see [1] for more details. As a
result, a lot of the Riemannian geometry of symmetric spaces can be understood
from the Lie theory.

By the Cartan decomposition theorem, G/K is a symmetric space. The Levi-
Civita connection of any G invariant metric is therefore the one induced by the
canonical connection on G→G/K. One place this is useful (for higher Teichmüller
Theory) is in understanding the harmonic metric equations associated to a reduc-
tive representation. If Σ is a closed surface, the harmonic map associated to a
representation

ρ : π1(Σ)→G

in Corlette’s theorem [2] is a map h : Σ̃→G/K.
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5. Complex semisimple Lie algebras

This section is mostly from [3]. For this section g will be a complex semisimple
Lie algebra. One key property of such a g is: there exists a maximally commuta-
tive subalgebra h ⊂ g whose adjoint action on g is diagonal and is unique up to
conjugation. By diagonal, we mean the Lie algebra representation ad : h→gl(g)
decomposes g into a direct sum irreducible representations called weight spaces. A
non zero weight for the adjoint action is called a root; the roots form a finite subset
∆ ⊂ h∗ and h acts on itself with weight 0. We have

g = g0 ⊕
⊕

α∈∆

gα.

where g0 = h. The spaces gα are the root spaces, they are defined by

gα = {X ∈ g|adH(X) = α(H)X ∀H ∈ h}.
Some important properties of the root space decomposition include:
1. h(R) = {h ∈ h|α(h) ∈ R ∀α ∈ ∆} is a real form of h.
2. If α ∈ ∆ then nα ∈ ∆ if and only if n = −1.
3. If α ∈ ∆ then dim(gα) = 1.
4. If α,β ∈ ∆ then [gα, gβ ] ⊂ gα+β , in particular [gα, g−α] ⊂ h and < gα, g−α, [gα, g−α] >

form a subalgebra isomorphic to sl(2, C).
5. < ∆ >= h∗

6. The Killing form satisfies B(u, v) = 0 for two root vectors u, v corresponding to
roots α,β ∈ ∆ with α + β .= 0. We also have that B|h and B|(gα ⊕ g−α) are
nondegenerate and B|h(R) is real and positive definite.
The dimension of a Cartan subalgebra is called the rank of g. Property 2 tells

us that if we choose a linear function l : h∗→R with the property l(∆) .= 0, we have
a splitting of ∆ into positive and negative roots, ∆ = ∆+ ∪∆−, here

∆+ = {α ∈ ∆|l(α > 0}.
A positive root α ∈ ∆+ is called simple if it can not be written as a linear combi-
nation (with positive coefficients) of elements of ∆+, we denote the set of simple
roots by Π = {α1, . . . ,αn} ⊂ ∆+. It is clear that all elements of ∆ are linear com-
binations of elements of Π, thus, by property 5 above we know that < Π >= h∗. In
fact Π forms a basis for h∗, and provide us with a canonical basis of

g =< hαi , eα, ẽα > .

Here hαi ∈ h is obtained from the isomorphism h∗→h given by the Killing form
and eα ∈ gα and ẽα ∈ g−α for α ∈ ∆+, are defined so that

< eα, ẽα, [eα, ẽα] = hα >∼= sl(2, C).

This leads us to the definitions of standard complex Borel and parabolic subal-
gebras.

Definition 5.1. The standard Borel subalgebra (or minimal parabolic) with re-
spect to a choice Cartan subalgebra and positive roots, is defined by

b = h⊕
⊕

α∈∆+

gα.

A standard parabolic subalgebra is any subalgebra containing b, a parabolic sub-
algebra is determined by a choice of subset of −Π.
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General Parabolic subalgebras are conjugates of standard ones and parabolic
subgroups are just exponentials of parabolic subalgebras. We will discuss these
more in the real case below.

6. Restricted roots, Iwasawa Decomposition and real parabolic
subgroups

This section is mostly from [5]. The goal of this section is to define parabolic
subgroups of real semisimple Lie groups. To do this we need to introduce restricted
roots and the Iwasawa Decomposition. Parabolic subgroups are defined by the
property that G/P is compact. The main complication is that for a real semisimple
Lie algebra the maximal abelian subalgebra that acts diagonally on g may be too
small to complexify to be a Cartan subalgebra of gC. For split real Lie groups, this
complication disappears.

We start with a real semisimple Lie algebra g with Cartan decomposition g =
k ⊕ p. Let a be the maximal abelian subspace of p, (note exp(a) ∼= (R+)dima)
since the adjoint of X ∈ g with respect to the postive definite form Bθ satisfies
(adX)∗ = −adθX , we see that X is self adjoint if and only if X ∈ p. Thus the set
{adH |H ∈ a} is a commiting family of self adjoint transformations of g. From this
we conclude g is a direct sum of simultaneous eigenspaces, all the eigenvalues being
real.

For λ ∈ a∗ we have

gλ = {X ∈ g|adH(X) = λ(H)X ∀H ∈ a},

if λ .= 0 and gλ .= 0 then λ is called a restricted root. Let Σ denote the set of
restricted roots.

The Lie algebra g admits an orthogonal decomposition g = g0⊕
⊕

λ∈Σ
gλ satisfying

the following:
1. [gλ, gµ] ⊂ gλ+µ

2. θgλ = g−λ hence λ ∈ Σ =⇒ −λ ∈ Σ.
3. g0 = a⊕m orthogonally, where m = Zk(a).
The dimension of a is called the real rank of g, if the real rank is the same as the
rank of g then g is a split real form. For split real forms the dimensions of gλ are
all 1.

6.1. Iwasawa Decomposition. Choose a notion of positivity for the restricted
roots Σ and let Σ+ be the positive restricted roots. Define n =

⊕
λ∈Σ+

gλ, this is

a nilpotent Lie algebra, the Iwasawa decomposition theorem on the level of Lie
algebra’s is the following.

Theorem 6.1. In the notation above, g is a vector space direct sum g = k⊕ a⊕ n.
Here a is abelian, n is nilpotent, a⊕n is solvable subalgebra of g and [a⊕n, a⊕n] = n.

There is an analogous theorem on the level of Lie Groups.

6.2. Parabolic subalgebras and subgroups. A parabolic subgroup of a real
semisimple Lie group is the exponential of a parabolic subalgebra, Q ⊂ G is a par-
abolic subgroup if and only if G/Q is compact and q ⊂ g is a parabolic subalgebra
if and only if qC ⊂ gC is a parabolic subalgebra. Just as in the set up for complex
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semisimple Lie algebras, we can choose a set of positive restricted roots Σ+ ⊂ Σ
and consider the corresponding simple restricted roots.
Definition 6.2. The mininmal parabolic subalgebra (with respect to the choices
made) is the subalgebra

b = g0 ⊕
⊕

λ∈Σ+

gλ.

A general minimal parabolic is one which is conjugate to b.

Definition 6.3. A parabolic subalgebra is a subalgebra containing a minimal par-
abolic.

Let Π ⊂ Σ+ be the subset of simple restricted roots, up to conjugation the
parabolic subalgebras of g are characterized by subsets Π′ ⊂ Π. To see this consider

Γ = Σ+ ∪ {β ∈ Σ|β ∈ span(Π′)},
we get the following parabolic subalgebra from Γ

q = g0 ⊕
⊕

λ∈Γ

gλ.

By flipping our notion of positive to roots, (i.e. the negative roots before are
now the positive roots) we have a similar minimal parabolic subalgebra

b− = g0 ⊕
⊕

λ∈Σ−

gλ.

Similarly corresponding to Π′ ⊂ Π we have −Π′ ⊂ −Π and

−Γ = Σ− ∪ {β ∈ Σ|β ∈ span(−Π′)},
and the corresponding parabolic subalgebra

q− = g0 ⊕
⊕

λ∈−Γ

gλ.

For notational clarity we write q = q+ and b = b+, the intersection

q+ ∩ q− = g0

⊕

{λ∈Σ|λ∈span(Π′)}

gλ

is called the Levi subalgebra of q. By exponentiating we get two parabolics Q+ =
exp(q+) and Q− = exp(q−) called opposite parabolics, the intersection Q+ ∩Q− is
called a Levi subgroup associated to Q.

References

[1] Francis Burstall, Simone Gutt, and John Rawnsley. Twistor spaces for Riemannian symmetric
spaces. Math. Ann., 295(4):729–743, 1993.

[2] Kevin Corlette. Flat G-bundles with canonical metrics. J. Differential Geom., 28(3):361–382,
1988.

[3] William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.

[4] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001.
Corrected reprint of the 1978 original.

[5] Anthony W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathemat-
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Anosov-representations:

Basic definitions and properties

Spencer Dowdall

August 2, 2013

Abstract

These informal notes are a brief summary of the talk I gave, with the same title, at the Workshop
on Higher Teichmüller-Thurston theory, which took place in Northport Maine in the last week of June
2013. Use at your own risk.

1 Informal introduction

Anosov representations were introduced by Labourie [Lab] and describe so-called ‘Anosov structures’. The
basic idea is that, rather than encoding a sort of geometric structure on your manifold, such representations
encode a type of dynamical structure that is analogous to that of an Anosov flow. This turns out to be a
more flexible type of structure that is applicable in a wider context.

After defining the concept, Labourie went on to establish various results about Anosov representations.
In particular, he showed that representations in Hitchin components are Anosov and used this to extend
the known results about Hitchin components. For example, he showed that the mapping class group acts
property on the Hitchin component, and that all representations in the Hitchin component are discrete,
faithful, and purely loxodromic.

Taking the idea behind Anosov representations further, Guichard and Wienhard [GW] expanded the
notion from Anosov structures on manifolds to representations of arbitrary word hyperbolic groups and
showed that the definition may be reformulated in terms of a pair of Anosov maps from the boundary of the
word hyperbolic group into certain compact homogeneous spaces. Working in this framework, they showed,
among other things, that the set of Anosov representations is open in the representation variety.

2 Motivation

Upon a first encounter with the topic, the definition of Anosov representations can appear quite opaque
making it difficult to perceive the idea behind the concept. In attempts to circumvent this frustration,
in this section I’ll discuss a motivational picture that I hope will help illuminate the definition of Anosov
representations in §3.

2.1 Anosov flows

Before getting into the specifics of Anosov representations, let us first recall the motivating picture of Anosov
flows. For a more detailed discussion of Anosov flows and their properties, see the article [Pla] by Plante
and the references therein.

Let M be a compact Riemannian manifold equipped with a C1–flow φt : M →M . This is said to be an
Anosov flow if there is a φt–invariant splitting

TM = Es ⊕ Eu ⊕ ET

1



of the tangent bundle TM into subbundles Es, Eu, and ET (so each bundle must be invariant under the
derivative Dφt) that satisfy

1. ET is a line bundle that is tangent to the flow φt,

2. Eu is expanding, that is, there exist constants A > 0, µ > 1 so that for all t ∈ R and v ∈ Eu we have

‖Dφt(v)‖ ≥ Aµt‖v‖,

3. Es is contracting, that is, there exist constants B > 0, λ < 1 so that for all t ∈ R and v ∈ Es we have

‖Dφt(v)‖ ≤ Bλt‖v‖.

(Above, the norms of vectors are calculated with respect to the Riemannian metric.) We remark that since
M is compact, conditions (2) and (3) are independent of the chosen metric; thus being Anosov is truly a
property of the flow itself.

In the case of an Anosov flow, it is known that the bundles Eu and Es are in fact integrable, meaning
that they are tangent to the leaves of C1 foliations Fu and Fs of M .

Example 2.1. The canonical example of an Anosov flow is the geodesic flow on (the unit tangent bundle of)
a compact negatively curved Riemannian manifold. To briefly see why such a flow is Anosov, let us consider
the case of a closed surface S equipped with a hyperbolic metric. Then the universal cover S̃ is identified
with the Poincaré upper half plane H2 and the unit tangent bundle T 1(S̃) with PSL(2,R). For concreteness,
let’s identify I ∈ PSL(2,R) with the vertical tangent vector at the point i ∈ H2.

Now, the tangent space TI(PSL(2,R)) is the Lie algebra sl(2,R) of 2× 2 traceless matrices, which has a
basis given by

GI =
(

1 0
0 −1

)
, XI = ( 0 1

0 0 ) , YI = ( 0 0
1 0 ) .

These generate left-invariant vector fields G, X, and Y on PSL(2,R) (which thus descend to vector fields on
T 1(S)) which induce a splitting of T (PSL(2,R)) as the sum of 3 line bundles EG, EX , and EY .

Exponentiating in the direction of these basis vectors gives the matrices

gt := exp(tGI) =
(
et/2 0

0 e−t/2

)
, xt := exp(tXI) = ( 1 t

0 1 ) , yt := exp(tYI) = ( 1 0
t 1 ) .

Multiplication on the right by gt defines a flow on PSL(2,R) that is parallel to the vector field G (and
similarly for xt and yt); in fact gt is exactly the geodesic flow on T 1(H2), and xt and yt are the horocycle
flows. Since these flows commute with the left action on π1(S) on PSL(2,R), they descend to flows on T 1(S).

With this concrete description of gt, it is easy to check that the geodesic flow is Anosov with respect to the
splitting T (PSL(2,R)) = EG⊕EX⊕EY . Indeed, EG is tangent to the flow, and the facts that xsgt = e−tgtxs
and ysgt = etgtys show that the flow gt is contracting and expanding on EX and EY , respectively.

2.2 Philosophical ramblings

When studying representation spaces Hom(Γ, G), a goal is often to understand what sort of information
these representations encode. For example, when Γ = π1(S) for a closed surface S and G = PSL(2,R), the
discrete faithful representations in Hom(Γ, G) exactly encode hyperbolic structures on S. The question then
arises, what sort of structure may be encoded by a representation into, for example, a larger Lie group?

We have seen in Example 2.1 that if a representation π1(S) → PSL(2,R) defines a hyperbolic structure
on S, then via the geodesic flow on T 1(S) we actually have the extra structure of an Anosov system. In
fact, as Example 2.1 illustrated, the distributions comprising the Anosov system in fact came from the Lie
group PSL(2,R) itself. Now, if we change PSL(2,R) into a larger-dimensional Lie group G, it becomes
quite difficult for a representation π1(S)→ G to encode a geometric structure on S—any ‘developing map’
from S̃ to the symmetric space G/K could not be a local homeomorphism because dimensions would not
match up, and so we are left searching for other candidate G–spaces to model the desired geometry on S.
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Labourie’s insight in [Lab] was that, in spite of these difficulties, perhaps such a representation π1(S)→ G
could still encode some sort of dynamical structure on S in the same way that we saw the structure of the
Lie group PSL(2,R) lead to an Anosov flow on T 1(S) in Example 2.1. This idea turned out to work, and
the added dynamical structure allowed Labourie and others to prove new results about the representation
spaces Hom(π1(S), G).

3 Anosov representations

Let G be a semisimple Lie group, and let (P+, P−) be a pair of opposite parabolic subgroups (see the
notes [Col] from Brian Collier’s talk on semisimple Lie groups for the definition and properties of parabolic
subgroups). Then the quotients F± = G/P± are compact homogeneous spaces (since P± are parabolic).
We also consider the homogeneous space X = G/L, where L = P+ ∩ P−.

If we let G act diagonally on F+ × F−, then L is exactly the stabilizer of (eP+, eP−) and so we may
identify X = G/L with an orbit in F+ × F−. In fact this is the unique open orbit. From the product
structure on F+ × F−, the orbit X inherits two G–invariant distributions E±, where the vector space over
a point x = (x+, x−) ∈ X ⊂ F+ × F− is E±x = Tx±F±. It follows that any X–bundle also comes equipped
with such a pair of distributions, which we again call E±.

Example 3.1. What exactly are the spaces G/P± and G/L? Let’s take a look at these in our favorite setting
where G = PSL(2,R). In this case, the Borel subgroup B is the subgroup of upper triangular matrices. Thus
there are no proper subgroups between G and B and we are forced to take P+ = B and P− as the subgroup
of lower triangular matrices.

Again identifying I ∈ G with the vertical-pointing tangent vector at i ∈ H2, we find that P+ ≤ G is
exactly the set of vertical-pointing tangent vectors in T 1(H2). Indeed, using the notation of Example 2.1,
every element of P+ may be expressed as a product gtxs, and both of these flows preserve the set of vertical
tangent vectors. In particular we see that all elements of P+ point towards the same boundary point in ∂H2

(namely ∞). Multiplying this picture by g ∈ G, we find that all vectors in gP+ point towards the boundary
point g · ∞ ∈ ∂H2. Thus we have a natural identification of G/P+ with the circle S1 = ∂H2. Similarly all
vectors in P− point away from 0 ∈ ∂H2, and so we again have an identification of G/P− with ∂H2. Finally,
G/L may be identified with the space of oriented geodesic lines in H2, which may equivalently be realized
as the set

∂(H2)(2) = ∂H2 × ∂H2 \ {(t, t) | t ∈ ∂H2}.

This same basic picture holds for every rank–1 Lie group. That is, whenever G is a rank–1 semisimple
Lie group, the only opposite parabolic subgroups are the Borel subgroup B+ and its opposite B−, and for
both of these there is a natural identification of G/B± with the boundary of the symmetric space G/K.
When G has higher rank, there are more possibilities for the opposite parabolic subgroups (P+, P−) and
the quotients G/P± can be identified with certain proper subspaces of the boundary of the symmetric space
G/K.

3.1 For Riemannian manifolds

Let N be a closed negatively curved Riemannian manifold, and let M = T 1(N) be its unit tangent bundle.

We then have the universal cover Ñ and its unit tangent bundle M̂ = T 1(Ñ), which is a Γ = π1(N)–cover

of M . Let φt denote the geodesic flow on M̂ ; this descends to the geodesic flow (also denoted φt) on M .

Now suppose that we have a representation ρ : Γ → G. The product M̂ × X becomes a Γ–space, where
Γ acts diagonally on M̂ by deck transformations and on X via the representation ρ. We denote the quotient
under this action by

Xρ := M̂ ×ρ X = Γ\(M̂ ×X ).

The projection of M̂ × X onto the first factor descends to a map Xρ → M giving Xρ the structure of an

X–bundle over M . Moreover, there is a natural flat connection on the bundle M̂ × X → M̂ (coming from
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the product structure) and this gives us a flat connection on Xρ. (Recall that a connection on a bundle is
simply a choice of a way to lift any smooth path in the base to the total space. Flat here just means that
the holonomy is locally trivial, that is, each point in the base has a neighborhood on which all closed loops
lift to closed loops in the total space). Additionally, we emphasize that Xρ comes equipped with two vector
bundles E± → Xρ (in fact, these are distributions E± ≤ TXρ) coming the aforementioned distributions E±

on the fiber X .
Now here is an important point: The flow φt on M̂ lifts to a flow on M̂×X defined by ψt(m,x) = (φtm,x).

Furthermore, this flow is invariant under the action of Γ, and so defines a flow (also called ψt) on Xρ which
lifts φt. Notice that the product structure gives us a splitting of the tangent bundle

T (M̂ ×X ) = TM̂ ⊕ TX ,

and that ψt preserves this splitting (meaning that the derivative Dψt preserves each subbundle). In addition,
Dψt acts trivially on TX , so the flow also preserves each of the distributions E± ≤ TX . To summarize, the
flow φt on M lifts to a flow ψt on Xρ that preserves the two distributions E±.

Definition 3.2 (Anosov representation). In the situation described above, a representation ρ : π1(N) =
Γ→ G is called (P+, P−)–Anosov if

1. the bundle Xρ admits a section σ : M → Xρ that is flat along flow lines (i.e., thinking of a flowline
as a path h : [0, 1] → M , the composition of this with the section σ must agree with a lift of h to Xρ
determined by the flat connection), and

2. the lifted action of φt (which is determined by the action of ψt) on σ∗E+ (resp. σ∗E−) is expanding
(resp. contracting) (see §2.1 for definitions of these terms).

Remark 3.3. In the definition of an Anosov flow (see §2.1), the expanding and contracting properties were
measured with respect the Riemannian norm on each tangent bundle. In the setting of Definition 3.2 the
bundles σ∗E± are not subbundles of the tangent bundle TM , so we don’t use the Riemannian metric here.
Rather, property (2) above just means that there is some continuous family of norms (‖ · ‖m)m∈M on the
fibers of the bundles σ∗E± so that the expanding/contracting properties are satisfied. Again, since M is
compact this does not depend on the choice of the family of norms.

3.2 The equivariant maps

Let us further study the structure of an Anosov representation ρ : Γ → G, where as above Γ = π1(N). A

section σ of the bundle Xρ →M is equivalent to a ρ–equivariant σ̂ : M̂ → X , and it is easy to see that σ is
‘flat along flow lines’ if and only if σ̂ is φt–equivariant. Such a map may instead be considered to be defined
on the space

M̂/φt = ∂Ñ (2) = ∂Ñ × ∂Ñ \ {(t, t) | t ∈ ∂Ñ}
of ordered pairs of distinct boundary points of Ñ . Thus the section σ : M → Xρ in the definition of an
Anosov representation is in fact equivalent to a pair of maps

σ̂ = (ξ+, ξ−) : ∂Ñ (2) → X ⊂ F+ ×F−.

Furthermore, the contracting property of the Anosov representation implies that ξ+ : ∂Ñ (2) → F+ in fact
only depends on the first coordinate, that is, it factors through the projection ∂Ñ (2) → ∂Ñ onto the
first factor. Similarly ξ− factors through the projection onto the second factor. Thus from an Anosov
representation we obtain a pair of ρ–equivariant maps

ξ± : ∂Ñ → F±.

These maps are called the Anosov maps associated to the Anosov representation. Conversely, given such
maps, one may recover the section σ : M → Xρ, and the properties imposed on σ in Definition 3.2 can be
reformulated in terms of these Anosov maps.
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In summary, the definition of a (P+, P−)–Anosov representation ρ : π1(N)→ G may be reformulated in
terms of the existence of continuous ρ–equivariant maps ξ±∂Ñ → G/P± satisfying certain properties which
are analogous to those in Definition 3.2 above; see [GW, Proposition 2.7] for details.

3.3 For hyperbolic groups

Whereas Labourie originally formulated the notion of Anosov representations in the setting of negatively
curved manifolds (as described in § 3.1 above), Guichard and Wienhard [GW] extended this notion to
representations ρ : Γ→ G of an arbitrary word hyperbolic group Γ.

The key in this definition is to replace the space (M̂, φt) with an appropriate ‘flow space’ for the hyperbolic

group. Such a space, which we will denote Γ̂, was introduced by Gromov [Gro] and further developed by
Champetier [Cha], Mineyev [Min] and others. This space comes equipped with an action by the group
Γ × R o (Z/2Z), where we should think of Γ as acting by deck transformations, the R as a ‘geodesic flow’,

and the Z/2Z as reversing direction. In particular, every orbit Γ → Γ̂ is a quasi-isometry, the R–orbits

R→ Γ̂ are quasi-geodesics, and the induced map

Γ̂/R→ ∂Γ̂(2) ∼= ∂Γ(2) = ∂Γ× ∂Γ \ {(t, t) | t ∈ ∂Γ}

is a homeomorphism.
While one does not have all the nice manifold machinery in this setting, given a representation ρ : Γ→ G,

one can nevertheless consider either ρ–equivariant maps ξ± : ∂Γ → F± or sections of the bundle Xρ =

Γ̂×ρ X → Γ\Γ̂ that are flat along flow lines. In either of these settings, one can then formulate the criterion
for being (P+, P−)–Anosov in terms of expanding/contracting properties that are directly analogous to those
considered in §§3.1–3.2 above. For details, see §2.3 of [GW].

4 L–Cartan projections

Given a hyperbolic group Γ and a representation ρ : Γ → G, we again form the associated flat bundle
Xρ = Γ̂ ×ρ X . When attempting to verify whether ρ satisfies the definition of an Anosov representation, it

is often difficult to check the expanding/contracting properties because any candidate section σ : Γ\Γ̂→ Xρ
must be flat, and therefore effectively ‘constant’, along flowlines. To aid in this task, Guichard and Wienhard
introduce the tool of L–Cartan projections:

Recall that up to conjugacy, every pair of opposite parabolic subgroups is determined by choosing some
subset of the simple roots in a root system. In particular there are not so many choices for the parabolic
subgroups P±. Going forward, let’s focus on the parabolic subgroups P± = P±Θ determined by such a subset
Θ of the simple roots ∆.

Recall that L = P+ ∩ P− is the common Levi component of our parabolic subgroups. We consider
its Weyl chamber a+

L , which can be viewed as a subalgebra of the Cartan subalgebra a of g. Specifically,
a+
L = {a ∈ a | α(a) > 0, for all α ∈ Θ} (recall Θ is a subset of the dual Lie algebra a∗).

Let M be the maximal compact subgroup of L, and set Y = G/M . Given our representation ρ : Γ→ G,

we can then form the flat bundle Yρ = Γ̂ ×ρ Y, which is an L/M–bundle over Xρ. By lifting a candidate

section σ : Γ\Γ̂ → Xρ to this larger bundle, one obtains a refined section β : Γ\Γ̂ → Yρ which is no longer

‘constant’ along flowlines. Because the composition of the flowline through m ∈ Γ\Γ̂ with β actually moves
in the fiber Y = G/M , one may look at the change between β(m) and β(φtm) and measure the Cartan
projection of this change. This projection is naturally an element of the Weyl chamber a+

L . In this way, one
obtains maps

µ± : Γ̂× R→ a+
L

which are termed the L–Cartan projections of σ. Then for (m, t) ∈ (Γ\Γ̂)× R, one may define

A±(m, t) = min
α∈∆\Θ

α(µ±(m̂, t)).
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The key here is that these numbers really aren’t all that complicated or too difficult to work with. Using
these tools, the process of checking for an Anosov representation reduces to checking a few eigenvalues:

Proposition 4.1 (Prop 3.16 of [GW]). Let ρ : Γ→ G be a representation, let σ be a section of Xρ which is
flat along R–orbits, and let A± be as above. The following are equivalent:

1. σ is an Anosov section (and so ρ is a (P+, P−)–Anosov representation).

2. There exist positive constants C, c such that for all t ≥ 0 and m ∈ Γ\Γ̂ one has A+(m, t) ≥ ct−C and
A−(m,−t) ≥ ct− C.

3. There exist positive constants C, c such that for all t ≥ 0 and m ∈ Γ\Γ̂ one has A+(m, t) ≥ ct− C.

4. limt→∞ infm∈Γ\Γ̂A+(m, t) =∞.

5 Basic properties

One can show that if you are given an Anosov representation ρ : Γ → G, then the corresponding Anosov
maps ξ± : ∂Γ → F± are unique (that is, there is just one choice of section σ : Γ\Γ̂ → Xρ that will be flat
along flow lines and satisfy the expanding/contracting properties).

This uniqueness, together with the density of fixed points of non-torsion γ ∈ Γ in ∂Γ imply that a
representation ρ : Γ→ G is Anosov if and only if the same holds for the restriction to a finite index subgroup
Γ′ < Γ, or for the composition π ◦ρ with a covering π : Ĝ→ G of Lie groups (where you choose the parabolic
subgroups compatibly).

Here are some other basic properties of Anosov representations:

• Every Anosov representation ρ : Γ→ G is a quasi-isometric embedding; in particular:

– ker(ρ) is finite,

– ρ(Γ) ≤ G is discrete, and

– ρ is well-displacing (meaning that γ and ρ(γ) have uniformly comparable translation lengths)

• For a fixed parabolic subgroup P < G, the set of P–Anosov representations in Hom(Γ, G) is open.

• When G has rank one, there is exactly one conjugacy class of parabolic subgroups P < G (so we
can unambiguously talk about a representation begin Anosov), and the following are equivalent for a
representation ρ : Γ→ G:

– ρ is Anosov

– there exits a continuous, equivariant, and injective map ξ : ∂Γ→ G/P

– ρ is a quasi-isometry

– ker(ρ) is finite and ρ(Γ) is convex convex cocompact (i.e., acts cocompactly on some convex subset
of the symmetric space G/K).

Finally, various well-studied types of representations are Anosov, such as maximal representations and
representations in the Hitchin component.
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DOMAINS OF DISCONTINUITY FOR ANOSOV

REPRESENTATIONS

TENGREN ZHANG

This article is a summary of the content in Section 7 to 10 of [3]. Let Γ be a
word-hyperbolic group. The goal is to construct domains of discontinuity for a given
Anosov representation ρ from Γ to a semisimple Lie group G. More specifically, we
want to construct an open, Γ-invariant subset Ω in a compact G-space on which Γ
acts properly discontinuously and cocompactly.

The general strategy for this construction is the following. In Section 2, we
first construct domains of discontinuity for representations of Γ into automorphism
groups of non-degenerate sesquilinear forms that are Anosov with respect to a
stabilizer of an isotropic line or a maximal isotropic subspace. Using this, we can
construct domains of discontinuity for Anosov representations of Γ into SL(n,K),
where K = R or C. This is described in Section 3. In Section 4 we demonstrate
how to generalize this construction for Anosov representations into a semisimple
Lie group. Finally, we end the article by mentioning in Section 5 some structural
results about these domains of discontinuity.

Acknowledgements: I would like to thank Richard Canary, Anna Wienhard
and Jeffrey Dacinger for helping me understand the material covered in this sum-
mary.

1. Basics

We will start by giving a quick review of the general structure theory of semisim-
ple Lie groups. The main purpose of this review is to establish notation that will
be used in the rest of this article. For more details, one can refer to Chapter 2
of [2]. A brief description of this structure theory is also given in Section 3 of [3].
Let G be a semisimple Lie group and let g be its Lie algebra. Choose a Cartan
decomposition g = k + p and a maximal abelian subalgebra a ⊂ p. This gives us a
root space decomposition

g = g0 ⊕
⊕
α∈Λ

gα,

where Λ is the set of roots for a. By choosing a Weyl chamber of this root space
decomposition to be the positive Weyl chamber, we get a partition of Λ into the
set of positive roots, denoted Λ+, and the set of negative roots, denoted Λ−. This
also gives us a set of simple roots, denoted ∆ ⊂ Λ+. Define

A := exp(a),

n :=
⊕
α∈Λ+

gα

N := exp(n),

and let K be the maximal compact subgroup of G with Lie algebra k.
1



2 TENGREN ZHANG

Now, given any subset Θ ⊂ ∆, we can define a parabolic subgroup PΘ :=
MΘAN , where MΘ is the subgroup of K that fixes every element (via the adjoint
representation) in

⋂
α∈Θ ker(α). The Lie algebra of PΘ has a decomposition

pΘ =
⊕

α∈Λ+∪ΛΘ∪{0}

gα,

where ΛΘ is the set of roots that lie in the R-span of the simple roots in Θ. It is
known that any parabolic subgroup of G is conjugate to a parabolic subgroup PΘ

for some Θ.

2. Automorphism groups of non-degenerate sesquilinear forms

We will now describe the construction of domains of discontinuity for a very
special type of representation ρ : Γ→ G.

Notation 2.1. Let (V, F ) be a vector space over either R, C or H, equipped with a
non-degenerate quadratic form F such that

(1) F is either an indefinite symmetric form or a skew-symmetric form when
V is over R,

(2) F is either a symmetric form, a skew-symmetric form or an indefinite Her-
mitian form when V is over C,

(3) F is either an indefinite Hermitian form or a skew-hermitian form when V
is over H.

Denote the group of automorphisms of (V, F ) by GF (V ). Also, let F0 be the set of
isotropic lines in V and let F1 be the set of maximal isotropic subspaces in V .

One can check that GF (V ) acts transitively on both F0 and F1. Moreover,
the stabilizers of isotropic lines and maximal isotropic subspaces in GF (V ) are
parabolic subgroups. In fact, we can describe what these parabolic subgroups
are. The isotropic line stabilizers are conjugate to the parabolic subgroup P∆\α0

for some simple root α0, and the parabolic subgroup that stabilizes a maximal
isotropic subspace is conjugate to P∆\α1

for some simple root α1. The roots α0

and α1 can be explicitly described, but we will not do so here. (See Section 7.2 of
[3].) To simplify notation, we will denote P∆\αi

as Qi. Using the orbit-stabilizer
theorem, we can thus identify Fi with G/Qi. In this section, we will only consider
representations ρ : Γ→ G that are Qi-Anosov for some i = 0, 1.

Exercise 2.2. Work out what α0 and α1 are when G is O(2, 3), O(3, 3) and Sp(4,R).

Let F01 := {(D,P ) ∈ F0 × F1 : D ⊂ P}, and let πi : F01 → Fi be the obvious
projection. For any subset A ⊂ Fi, let KA := π1−i(π

−1
i (A)), and observe that if A

is closed in Fi, then KA is closed in F1−i. In particular, if ρ : Γ→ G is Qi-Anosov,
then we have a Γ-invariant Anosov map ξ : ∂∞Γ → Fi whose image is closed in
Fi, so Kξ(∂∞Γ) is closed in F1−i. Let Ωρ := F1−i \Kξ(∂∞Γ), and observe that Ωρ
is an open, Γ-invariant subset of F1−i. In [3], Guichard and Wienhard proved the
following theorem.

Theorem 2.3. (Theorem 8.6 of [3]) Let ρ : Γ→ G be a Qi-Anosov representation.
If Ωρ is nonempty, then Γ acts properly discontinuously and cocompactly on Ωρ.

We will now give a vague description of their proof. To prove the proper discon-
tinuity of the Γ action, they showed that the Qi-Anosovness of ρ implies that its
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image satisfies some proximality conditions, which gives us some control of the Γ
action on its limit set in Fi. This then gives us enough control of the Γ action on
Kξ(∂∞Γ) to prove that Γ acts properly discontinuously on the complement. For the
cocompactness of the action, they considered the orientable double cover Fori of
Fi. By making some suitable arrangements, they could assume without loss of gen-
erality that Γ is torsion free and the codimension of Kor

ξ(∂∞Γ) in For1−i is sufficiently

big. Hence, Γ\Ωorρ is a connected orientable manifold. Proving the cocompactness
of the action of Γ in Ωρ is equivalent to proving the compactness of Γ\Ωorρ , which in

turn is equivalent to proving that H0
c (Γ\Ωorρ ) (cohomology with compact support

and coefficients in R) is non-zero. This can be done using Poincaré duality and
long exact sequences of homology groups.

In the course of proving Theorem 2.3, several important properties of Kξ(∂∞Γ)

are used. The two most important ones are listed here.

Proposition 2.4. (Proposition 8.1 of [3]) Let ρ : Γ → G be a Qi-Anosov repre-
sentation with associated Anosov map ξ : ∂∞Γ→ Fi. Then π1−i : π−1

i (ξ(∂∞Γ))→
Kξ(∂∞Γ) is a homeomorphism.

This proposition is a consequence of the transversality property of the Anosov
map ξ. Also, it follows from this proposition that Kξ(∂∞Γ) ' π−1

i (ξ(∂∞Γ)) is a
locally trivial fiber bundle over ξ(∂∞Γ) ' ∂∞Γ. The fiber over a point t ∈ ∂∞Γ is
the set of lines through the origin in ξ(t) if i = 1, and is the set of maximal isotropic
subspaces containing ξ(t) if i = 0.

The next proposition computes the “codimension” of ∂∞Γ in F1−i. Here, the
dimensions of the topological spaces are cohomological dimensions for Čech coho-
mology.

Proposition 2.5. (Proposition 8.3 of [3]) Let ρ : Γ → G be a Qi-Anosov rep-
resentation. Let vcd(Γ) be the virtual cohomological dimension of Γ and let δ :=
dim(Fi−1)− dim(Kξ(∂∞Γ)). Then

• If G = O(p, q), U(p, q) or Sp(p, q) (with 0 < p ≤ q), then δ = q − vcd(Γ),
2q − vcd(Γ) or 4q − vcd(Γ) respectively.
• If G = O(2n,C) or O(2n− 1,C), then δ = 2n− vcd(Γ).
• If G = Sp(2n,R) or Sp(2n,C), then δ = n+ 1− vcd(Γ) or 2n+ 2− vcd(Γ)

respectively.
• If G = SO∗(2n), then δ = 4n− 2− vcd(Γ).

In particular, if δ > 0 then Ωρ is non-empty. To prove Proposition 2.5, we use
Proposition 2.4 to get that dim(Kξ(∂∞Γ)) = dim(M) + dim(∂∞Γ), where M is a
fiber π1−i. It is well-known result by Bestvina and Mess (see Corollary 1.4 of [1])
that dim(∂∞Γ) = vcd(Γ) − 1. Thus, computing dim(M) in each of the cases will
give us the statements in Propositon 2.5.

Exercise 2.6. Explicitly compute δ for a Q0-Anosov representation of the funda-
mental group of a closed surface with genus at least 2 into O(2, 3).

3. General strategy and the SL(n,K) case

We would like to use the domains of discontinuity constructed in Section 2 to con-
struct domains of discontinuity for Anosov representations into a general semisimple
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Lie group. The strategy to do so is the following. Let G be an arbitrary semisim-
ple Lie group and let ρ : Γ → G be a representation. We want to find a group
homomorphism φ : G→ GF (V ) such that

(I) φ ◦ ρ : Γ→ GF (V ) is Q0-Anosov (or Q1-Anosov),
(II) There is a maximal isotropic subspace T (or an isotropic line D resp.) in V

whose stabilizer in G is a proper subgroup of G.

Suppose that we have such a group homomorphism φ, then we can construct a
domain of discontinuity for ρ in the G-space G/AN as follows. (We only describe
the construction in the Q0-Anosov case. The Q1-Anosov case is similar.)

We can define the φ-equivariant injective map

φ0 :G/StabG(T )→ F0(V ) = GF (V )/Q0(3.1)

g · StabG(T ) 7→ φ(g) ·D

Moreover, condition (I) implies that we have an Anosov map ξφ◦ρ : ∂∞Γ→ F0(V )
for φ ◦ ρ. By Section 2, we have a domain of discontinuity Ωφ◦ρ in F1(V ) for φ ◦ ρ.

One can then check that Ωρ,V,T := φ−1
1 (Ωφ◦ρ) is an open subset of G/AN that is

stabilized by Γ, and on which Γ acts properly discontinuously and cocompactly.
This is the required domain of discontinuity.

Thus, we now only need to construct the homomorphism φ with the required
properties. The basic tool used to verify if φ satisfies the condition (1) is the
following proposition.

Proposition 3.1. (Proposition 4.4 of [3]) Let φ : G → G′ be a Lie group homo-
morphism. Let a+, a′+ be the positive Weyl chambers for G and G′ respectively,
and let ∆, ∆′ be the corresponding set of simple roots for G and G′ respectively.
Also, let W ′ be the Weyl group for G′. For any Θ′ ⊂ ∆′ , and let W ′Θ′ be the Weyl
group of L′Θ′ . Let Θ ⊂ ∆ and suppose that there exist w′ in W ′ and Θ′ ⊂ ∆′ such
that

φ∗(a+ \
⋃
α∈Θ

ker(α)) ⊂ w′ ·W ′Θ′ · (a′+ \
⋃

α′∈Θ′

ker(α′)).

Then for any P+
Θ -Anosov representation ρ : Γ → G, the representation φ ◦ ρ is

P ′
+
Θ′-Anosov.

The idea behind the proof of this proposition is to convert the contraction prop-
erties in the definition of an Anosov representation into more Lie group theoretic
conditions, so that it is easy to see whether the contraction is preserved when we
compose the Anosov representation ρ with a group homomorphism φ. Guichard
and Wienhard did this using what they call L-Cartan projections. For more details,
see Section 3.3 of [3].

Using Proposition 3.1 and some standard representation techniques, we can now
give explicit constructions (See Section 10 of [3]) of domains of discontinuity for all
Anosov representations into SL(n,K), where K is either R or C. We will briefly
describe how this is done.

From the definition of a P -Anosov representation, it is easy to see that every
P -Anosov representation is also PΘ1

∩PΘ2
-Anosov, where PΘ1

, PΘ2
is some pair of

maximal parabolic subgroups of G such that the opposite of PΘ1 is conjugate to
PΘ2 , and both PΘ1 and PΘ2 contain N . If we choose a to be the set of diagonal
matrices in sl(n,K) and n to be the upper triangular matrices in sl(n,K), then in
the standard basis, there is some k such that PΘ1

is the stabilizer of the subspace
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spanned by the first k basis vectors and PΘ2
is the stabilizer of the subspace spanned

by the first n − k basis vectors. In this case, it is clear that the natural map

φ : SL(n,K) → O(End(
∧k

Kn), tr) satisfies condition (I), and we can check that
it satisfies condition (II) using Proposition 3.1. Thus, we can construct domains of
discontinuity for P -Anosov representations to SL(n,K) for any proper parabolic
subgroup P in SL(n,K).

Exercise 3.2. Consider the case when G = SL(5,R). List all the possible parabolic
subgroups of the form PΘ1

∩PΘ2
as described above. Also, give explicit descriptions

of the domains of discontinuity for PΘ1
∩PΘ2

-Anosov representations for all possible
PΘ1 ∩ PΘ2 .

4. Generalization to other semisimple Lie groups

To further extend this to the case of a general semisimple Lie group G, we use
the following proposition.

Proposition 4.1. (Proposition 4.3 of [3]) Let φ : G → SL(V ) be an irreducible
finite dimensional linear representation of G. Let V = D⊕H be a decomposition of
V into a line and a hyperplane, and set Q+

0 = StabSL(V )(D), Q−0 = StabSL(V )(H).

Suppose that (P+, P−) = (StabG(D),StabG(H)) is a pair of opposite parabolic
subgroups. Then a representation ρ : Γ → G is (P+, P−)-Anosov if and only if
φ ◦ ρ : Γ→ SL(V ) is (Q+

0 , Q
−
0 )-Anosov.

This is in fact a specialization of Proposition 3.1 to the case when φ is irreducible
and G′ = SL(V ) for some finite dimensional vector space V .

To use this proposition, we need to build, for any semisimple Lie group G and any
proper parabolic subgroup P ⊂ G, an irreducible representation φ : G → SL(V )
such that P = StabG(D) for some line D in V . This is not difficult to do using
some standard representation theory. For instance, one can simply take V =

∧p
g,

where g is the lie algebra of G and p is the dimension of the Lie algebra p of P .
Now, given a P -Anosov representation ρ : Γ → G, where G is a semisimple

Lie group and P is a proper parabolic subgroup of G, we first construct an irre-
ducible representation φ1 : G→ SL(V ) satisfying the conditions in Proposition 4.1.
Then φ1 ◦ ρ is Anosov with respect to a line stabilizer, which is a proper parabolic
subgroup of SL(V ). By the last paragraph of Section 3, we can then construct a
representation φ2 : SL(V ) → O(End(Kn), tr) so that φ2 ◦ φ1 ◦ ρ is Anosov with
respect to the stabilizer of an isotropic line in (End(Kn), tr). Here, K = C if V is
a complex vector space and K = R if V is a real vector space. Then one can check
that φ = φ2 ◦ φ1 satisfies conditions (I) and (II), so we can use φ in the general
strategy given at the start of Section 3 to obtain a domain of discontinuity for ρ.

5. Structure of the domain of discontinuity

Guichard and Wienhard also managed to obtain several results about the struc-
ture of these domains of discontinuity. We will end this article by mentioning two
such results.

The first is an attempt to generalize Proposition 2.5 to the setting when G is
an arbitrary semisimple Lie group. This is difficult to do in general, but in the
cases where the virtual cohomological dimension of Γ is one or two, there are some
concrete conditions to determine when the domain of discontinuity we constructed
is nonempty. The main theorem in this direction is the following.
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Theorem 5.1. (Theorem 9.10 of [3]) Let ρ : Γ→ G be a P -Anosov representation
for which we can construct a domain of discontinuity, Ωρ,V,T ⊂ G/AN .

(1) If vcd(Γ) = 1, then Ωρ,V,T is non-empty.
(2) If vcd(Γ) = 2 and P contains every factor of G that is locally isomorphic

to SL(2,R), then Ωρ,V,T is nonempty.

The second result is about the topology of the quotient Γ\Ωρ,V,T . In general,
it is not easy to determine the topology of Γ\Ωρ,V,T , but we have the following
theorem.

Theorem 5.2. (Theorem 9.12 of [3]) Let ρ : Γ → G be a P -Anosov representa-
tion for which we can construct a domain of discontinuity Ωρ,V,T ⊂ G/AN . Let
HomP-Anosov(Γ, G) be the space of P -Anosov homomorphisms from Γ to G. Then
there exists an open neighborhood U of ρ in HomP-Anosov(Γ, G) such that

Γ\
⋃
ρ′∈U

Ωρ′,V,T ' U × (Γ\Ωρ,V,T )

as bundles over U .

In particular, the topology of Γ\Ωρ,V,T depends only on the connected component
of HomP-Anosov(Γ, G) containing ρ.
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HARMONIC MAPS - FROM REPRESENTATIONS TO HIGGS

BUNDLES

ANDREW SANDERS

Abstract. The theory of Higgs bundles, initiated by Hitchin, has been in-

strumental in understanding the topology and geometry of character varieties.

In addition, this gauge theoretic viewpoint provides a wealth of revealing,

and puzzling, extra structure on the character variety. The key to the cor-

respondence between representations of surface groups and Higgs bundles is

the existence of an equivariant harmonic map from the universal cover of the

surface to the symmetric space associated to a reductive Lie group G. The

purpose of this note is to introduce the theory of Higgs bundles, with a strong

emphasis put on the role of harmonic maps. We will begin with an overview

of Fricke-Teichmüller theory via harmonic maps, and then explain how Higgs

bundles generalize this point of view from PSL(2,R) to other Lie groups. We

will focus exclusively on the linear groups SL(n,C), though it should be noted

that the theory proceeds in an analogous fashion for any reductive Lie group.

Throughout, Σ is a fixed smooth, oriented, closed surface of genus greater than

one. A base point x ∈ Σ is fixed and let π := π1(Σ, x).

1. Fricke-Teichmüller theory via harmonic maps

Select hyperbolic metrics h0 and h on Σ. In local isothermal coordinates z =

x1 + ix2 and w = y1 + iy2 for h0 and h respectively,

h0 = e2u|dz|2

and

h = e2v|dw|2.

For any C1-mapping f : Σ→ Σ, define the energy (or action functional):

E(f) =
1

2

∫
Σ

‖df‖2dVh0 .

Above, we view the differential of f as a section df ∈ Γ(T ∗Σ ⊗ f∗TΣ) and the

norm ‖df‖2 (the energy density) is computed using the metrics h0 and h, explicitly

in local coordinates:

‖df‖2 = hij0 ∂if
α∂jf

βhαβ(f).

Here, we employ Einstein summation convention with matching upper and lower

indices being summed. Latin indices refer to domain variables and Greek indices

to range variables; lastly,

fα = f ◦ yα.
1
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Definition 1.1. A C1-mapping f : Σ → Σ is harmonic if it is a critical point for

the energy. Namely, given any C1-variation through C1-mappings ft : Σ→ Σ, the

first variation vanishes:

d

dt
E(ft)|t=0 = 0.

Throughout the rest of the notes, we will ignore all issues of regularity and

assume all maps to be C∞. This is not a major restriction for our purposes, the

regularity theory for semi-linear elliptic PDE will guarantee the harmonic maps we

meet are even real-analytic.

A smooth map f : Σ → Σ which is harmonic necessarily satisfies the Euler-

Lagrange equations

∆h0
fγ + Γγαβ(f)∂if

α∂jf
βhij0 = 0(1.1)

for γ = 1, 2.

In these equations, ∆h0
is the Laplace-Beltrami operator for the metric h0 and

the Γγαβ are the Christoffel symbols for the target metric h. This is a semi-linear

system of elliptic partial differential equations; if this sounds a bit arcane, for our

purposes it assures that solutions to this equation have very strong regularity and

uniqueness properties.

Observe that everything said above makes sense replacing Σ by a pair of closed

Riemannian manifolds (M, g) and (N,h). Harmonic maps in this setting were for-

mally introduced by Eells and Sampson [ES64] culminating in:

Theorem 1.2. Let (M, g) and (N,h) be closed, smooth Riemannian manifolds such

that (N,h) has negative sectional curvature. Then in every homotopy class of maps

[M → N ] there exists a smooth harmonic map f : (M, g) → (N,h). Furthermore,

provided f does not map onto a closed geodesic in N, it is unique.

Remark: The existence statement above is due to Eells-Sampson, while the

uniqueness is due to Hartman [Har67].

In our setting, The above Theorem becomes:

Theorem 1.3. There exists a unique harmonic map f : (Σ, h0)→ (Σ, h) homotopic

(even isotopic) to the identity.

In conformal coordinates, the Euler-Lagrange equations (1.1) take the form

∂f

∂z∂z
+ 2e−v

∂

∂z

(
ev(f)

) ∂f
∂z

∂f

∂z
= 0.

The form of this equation exposes a crucial invariance:

• In the case that the domain is a surface, the harmonic map depends only on

the conformal class of the metric. This follows since the metric h0 appears

nowhere, only the conformal coordinate z.

For this reason, a harmonic map from a surface is linked to the holomorphic

geometry of the surface. This is made precise by the following Proposition due to

Hopf [Hop54],

Proposition 1.4. Define a quadratic differential by,

φ := φ(z)dz2 = h

(
∂f

∂z
,
∂f

∂z

)
dz2.

If f is harmonic, then φ is holomorphic.
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Written in the conformal coordinates,

φ(z) = e2v(f(z)) ∂f

∂z

∂f

∂z
.

The φ associated to a harmonic map f is called the Hopf differential. This defines

a map, which depends on a choice of conformal structure σ ∈ T in the Teichmüller

space of isotopy classes of conformal structures on the surface:

Nσ : F −→ QD(Σ, σ) := H0((Σ, σ),K2)

h 7−→ Hopf differential of unique harmonic map.

Here we make the distinction between the Tiechmüller space T and the Fricke

space F of isotopy classes of hyperbolic metrics on Σ. The two are only identi-

fied after making the transcendental identification afforded by the Köebe-Poincaré

uniformization Theorem.

The fundamental theorem which allows one to ”do” Teichmüller theory with this

approach is due to the efforts of many mathematicians, we mention Wolf [Wol89]

and refer to the references therein:

Theorem 1.5. For each σ ∈ T , the map

Nσ : F −→ H0((Σ, σ),K2)

is continuous, injective and proper. Hence it is a homeomorphism since the latter

space of sections is a vector space.

Remark: In fact, the mapping is real analytic (due to the fact that the harmonic

map depends real analytically on parameters) for the real analytic structure on the

Fricke space induced by its incarnation as a component of the character variety

χ(π,PSL (2,R)) = Hom (π,PSL(2,R)) /PSL(2,R).

The proof outlines as follows: the continuity follows from the well-posedness of

solutions to the harmonic map equations, i.e. solutions depend continuously on the

data. The injectivity follows from an easy application of the maximum principle,

once an equation has been concocted to which it can be applied. The properness

is the only piece requiring specific consideration and can be found in the paper of

Wolf [Wol89]. Morally, it is proper because it takes more ”energy” to stretch a

hyperbolic surface onto one which far away from it in the Fricke space.

Remarkably, Hitchin [Hit87], Simpson [Sim92], Donaldson [Don87], and Corlette

[Cor88] discovered that this is part (a base case!) of a profound correspondence:

{ X closed, Kähler manifold }−→ { Reductive representations of π1(X) into a

reductive Lie group } −→ { Holomorphic objects over X }.

The particularly ingeniuous leap stems from the fact that in our above discus-

sion of harmonic maps and Fricke-Teichmüller theory, we are missing part of the

holomorphic objects over X alluded to in the diagram above. These holomorphic

objects are named Higgs bundles. The Hopf differential is a remnant of the Higgs

bundle which we will construct for any reductive representation ρ : π → SL(n,C).

Before we tackle this, we must recall the basic calculus of vector bundles.
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2. Calculus on Vector Bundles: metrics and connections on bundles

A thorough reference for the following material is Kobayashi’s book [Kob87].

Let M be a smooth, closed manifold and V → M a smooth real or complex

vector bundle over M. We denote the C∞(M)-module of smooth sections of V by

Γ(V ).

Definition 2.1. A connection (or covariant derivative) is a first order differential

operator

∇ : Γ(V )→ Γ(T ∗M ⊗ V )

satisfying:

∇(s+ s′) = ∇s+∇s′

∇fs = df ⊗∇s+ f∇s

for all s, s′ ∈ Γ(V ) and f ∈ C∞(M).

Given two connections ∇,∇′, the difference satisfies

∇−∇′(fs) = f(∇−∇′)s.

Hence, ∇ − ∇′ ∈ Ω1(End(V )) where Ω1(End(V )) is the space of one-forms on M

with values in the endomorphisms of V. In slightly fancy language, the space of

connections on V, denoted A(V ), is an affine space with underlying vector space of

translations Ω1(End(V )).

Given ∇ ∈ A(V ), there exists a skew-symmetric extension called the exterior

covariant differential operator associated to ∇ :

d∇ : Ωk(V )→ Ωk+1(V )

where Ωk(V ) is the space of exterior differential k-forms with values in V. It is

defined by enforcing the graded Leibniz rule: given ω ∈ Ωk(M) and s ∈ Γ(V ),

d∇(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧∇s.

The introduction of this operator allows for a concise definition of the curvature

of a connection,

Definition 2.2. Given a connection ∇ ∈ A(V ), the curvature 2-form is defined by

F∇ := d∇ ◦ ∇ ∈ Ω2(End(V )).

Over a trivializing open set U ⊂ M, a section may be written s = siei. The

action of a connection ∇ is

∇s = (dsj + siAji )ej ,

where the connection coefficients Aji (relative to U) comprise a matrix of 1-forms

on U. Then the curvature of ∇ acts via

F∇(s) = si(dAki +Akj ∧A
j
i )ek.

Now supposeM is a complex manifold and V is a smooth, complex vector bundle.

The complexified co-tangent bundle of M splits into types

T ∗M ⊗R C = T (1,0)M ⊕ T (0,1)M.
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Definition 2.3. A pseudo-connection (or Cauchy-Riemann, or del-bar operator)

is a first order differential operator

∂V : Γ(V )→ Γ(T (0,1)M ⊗ V )

such that

∂V (s+ s′) = ∂V s+ ∂V s
′

∂V (fs) = ∂f ⊗ s+ f∂V s.

This operator also has a graded skew-commutative extension to an operator

which by abuse of notation we write the same way,

∂V : Ωp,q(V )→ Ωp,q+1(V ).

Similarly to connections, pseudo-connections are an affine space with underlying

vector space of translations Ω0,1(End(V )). The following integrability condition

shows the importance of such operators.

Theorem 2.4. Let (V, ∂V ) be a complex vector bundle with a pseudo-connection.

Then V has a holomorphic structure whose holomorphic local sections are exactly

those sections s satisfying ∂V s = 0 if and only if ∂
2

V = 0.

Note that in the case that the manifold M is a surface, the condition of the above

theorem is automatically satisfied since a Riemann surface carries no non-zero (0, 2)

forms. In particular, given any connection ∇ on V, we may define a holomorphic

structure via ∇0,1 = ∂V .

Now we introduce metrics on vector bundles.

Definition 2.5. An Hermitian metric on a complex vector bundle V is a smoothly

varying family of hermitian forms:

h : Vx ⊗ Vx → C

on each fiber Vx over x ∈M.

A connection ∇ ∈ A(V ) is called unitary with respect to an Hermitian metric h

if for all s, s′ ∈ Γ(V ),

dh(s, s′) = h(∇s, s′) + h(s,∇s′).

Supposing we have a holomorphic vector bundle (V, ∂V ) with an Hermitian met-

ric,

Proposition 2.6. There exists a unique unitary connection ∇ (called the Chern

connection) such that ∇0,1 = ∂V .

From here forward, we will fix a Riemann surface structure σ ∈ T and denote

the corresponding Riemann surface X = (Σ, σ). Given a representation ρ : π →
SL(n,C), form the associated flat vector bundle

Vρ := Σ̃×ρ Cn,

defined as a the quotient of Σ̃ × Cn via the diagonal (left) action of π acting on

the second factor via composition with the representation ρ. In a flat trivialization,

the flat connection is simply the exterior differential acting component-wise on a

(local) vector-valued function.
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Next, consider a ρ-equivariant map

f : Σ̃→ Xn,

where

Xn := {A ∈ SL(n,C) |A = A∗, det(A) = 1}

is an explicit model for the symmetric space SL(n,C)/SU(n). The left action of

SL(n,C) on Xn is given by

g ·A = (g−1)∗Ag−1.

Note that such an equivariant map exists since it is equivalent to a section of the

fiber bundle

Σ̃×ρ Xn

which has contractible fibers. Let 〈 , 〉 denote the standard Hermitian inner product

on Cn. Given a pair of sections of s, s′ ∈ Γ(Vρ), identify them with equivariant

vector-valued maps Σ̃→ Cn. For x ∈ Σ̃, f defines a pairing

Hf (s, s′)(x) = 〈s(x), f(x)s′(x)〉.

If γ ∈ π is acting by deck transformations,

Hf (s, s′)(γx) = 〈s(γx), f(γx)s′(γx)〉

= 〈ρ(γ)s(x), (ρ(γ)−1)∗f(x)ρ(γ)−1ρ(γ)s′(x)〉
= 〈s(x), f(x)s′(x)〉
= Hf (s, s′)(x).

Thus, Hf defines an Hermitian metric on Vρ. Conversely, given a metric H on Vρ,

select a positively oriented unitary frame {ei} over the base point x ∈ Σ̃. Parallel

translation using the flat connection gives a global section of the unitary frame

bundle which we will also denote {ei}. Then define a ρ-equivariant map,

f : Σ̃ −→ Xn

y 7−→ {H(ei(y), ej(y))}i,j=1,..,n.

The above two processes are inverse to one another.

Now, denote the flat connection on Vρ by ∇. Given an Hermitian metric on

Vρ, split the connection (uniquely) as a unitary connection A plus an Hermitian

endomorphism Ψ ∈ Ω1(End(Vρ)),

∇ = A+ Ψ.

The flatness of ∇ implies

0 = F∇ = FA + dAΨ +
1

2
[Ψ,Ψ].(2.1)

The first term is the curvature of the unitary connection A which by unitarity is a

2-form with values in skew-Hermitian endomorphisms. The second term is a 2-form

with values in Hermitian endomorphisms. Writing Ψ = αi ⊗ fi for αi ∈ Ω1(Σ) and

fi ∈ Γ(End(Vρ)),

dA(Ψ)(s) = dαi ⊗ fi(s)− αi ∧A(fi)(s)
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and A(fi) is defined in a trivialization via its action on sections s = sjej ,

A(fi)(s
jej) := A(sjfkijek)

= d(sjfkij)⊗ ek + sjfkijA
l
kel.

Lastly, the final term combines the wedge product on forms with the Lie bracket

(commutator) on endormorphisms;

[Ψ,Ψ] := αi ∧ αj ⊗ [fi, fj ].

The commutator of two Hermitian endomorphisms is skew-Hermitian, thus decom-

posing (2.1) into Hermitian and skew-Hermitian pieces yields a pair of equations:

FA +
1

2
[Ψ,Ψ] = 0,(2.2)

dAΨ = 0.(2.3)

Next, use the complex structure on X = (Σ, σ) to decompose the covariant deriva-

tive dA and Ψ according to type:

dA = ∂A + ∂
A
,

Ψ = φ+ φ∗H .

Above, φ ∈ Ω1,0(End(Vρ)), φ
∗H ∈ Ω0,1(End(Vρ)) with the latter adjoint defined

using the metric H and the type change given by sending dz to dz. Since there are

no (0, 2) nor (2, 0) forms on X, (2.2) and (2.3) simplify further,

FA + [φ, φ∗H ] = 0,(2.4)

∂
A

(φ) + ∂A(φ∗H ) = 0.

By the discussion about holomorphic structures, the operator ∂
A

induces a holo-

morphic structure on Vρ as well as End(Vρ). Wouldn’t it be nice if ∂
A
φ = 0, i.e. φ

is holomorphic?

Definition 2.7. The metric H is called harmonic if and only if ∂
A
φ = 0.

This definition is bolstered by the following crucial fact:

Proposition 2.8. H is harmonic if and only if the associated equivariant map

f : X̃ → Xn

is harmonic.

Remark: Harmonicity is defined with respect to any conformal metric on the

Riemann surface X̃ and the left-invariant Riemannian metric on Xn. Note that we

did not define harmonic for non-compact manifolds, nor for equivariant maps: the

energy to be minimized here is:

E(f) =
1

2

∫
D

‖df‖2dV

where D ⊂ X̃ is a fundamental domain for the action of π and dV is the volume

element of our chosen conformal metric on X.

The analog of the Eells-Sampson theorem in the equivariant case is the follow-

ing, first proved by Donaldson [Don87] in rank 2, then by Corlette [Cor88] in full

generality (see also Labourie [Lab91]).
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Theorem 2.9. Let ρ ∈ Hom(π,SL(n,C)). There exists a ρ-equivariant harmonic

map

f : X̃ → Xn

if and only if the Zariski closure of the image of ρ is a reductive subgroup of SL(n,C).

Furthermore, the map is unique up to post-composition by an element which cen-

tralizes the image of ρ.

A reductive subgroup is one which acts completely reducibly, via the adjoint

representation, on the Lie algebra sl(n,C). The prototypical non-reductive subgroup

is the subgroup of upper triangular matrices.

Let D(X) denote the space of gauge isomorphism classes of flat vector bundles

with harmonic metric (the De-Rham moduli space) and χ(Σ,SL(n,C)) the charac-

ter variety consisting of conjugacy classes of reductive representations π → SL(n,C)

(the Betti moduli space).

The above theorem yields a map, parameterized by a chosen point σ ∈ T ,

Nσ : χ(Σ,SL(n,C))→ D(X).

The above map has an obvious inverse given by taking the holonomy of the flat

connection which proves,

Theorem 2.10. There is a family of isomorphisms Nσ : χ(Σ,SL(n,C)) → D(X)

parameterized by a point σ ∈ T where X = (Σ, σ).

Remark: One way to think about this isomorphism is as a section of the bundle

over χ(Σ,SL(n,C)) whose fiber over ρ consists of the (isomorphism classes of)

Hermitian metrics on Vρ. Any smooth section of this bundle yields an identification

of the character variety with the space of reductive flat bundles equipped with the

metric picked out by the chosen section. This leads to an interesting (albeit vague)

question: is there another consistent choice of Hermitian metric on flat bundles

which yields a geometrically rich deformation space?

3. Higgs bundles

Finally, we introduce the notion of a Higgs bundle.

Definition 3.1. A rank-n Higgs bundle over X is a triple V = (V, ∂V , φ) where

(V, ∂V ) is a holomorphic vector bundle and φ ∈ H0(X,K ⊗ End(V )).

Remark: φ ∈ H0(X,K⊗End(V )) says exactly that φ is a holomorphic, endomorphism-

valued 1-form on X. The tensor φ is called the Higgs field.

Definition 3.2. A rank-n Higgs bundle V over a Riemann surface X is stable if

and only if for every φ-invariant holomorphic sub-bundle W ⊂ V,
deg(W )

rk(W )
<

deg(V )

rk(V )
.

V is poly-stable if there exists stable Higgs bundles W1, ...,Wk such that

V = W1 ⊕ ....⊕Wk.

The critical Theorem linking Higgs bundles to the story which has unfolded thus

far is due to Hitchin [Hit87] (in rank 2) and Simpson [Sim92] in general.
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Theorem 3.3. Let V = (V, ∂V , φ) be a poly-stable Higgs bundle such that det(V )

is the trivial holomorphic line bundle. Then there exists a unique (up to unitary

automorphism) Hermitian metric H on V such that the Chern connection A of H

satisfies

FA + [φ, φ∗H ] = 0(3.1)

Furthermore, if such a metric exists on any Higgs bundle V, then V is poly-stable.

Let M0,n(X) be the moduli space of degree 0, rank n, poly-stable Higgs bundles

with fixed trivial determinant (the Doulbeaut moduli space). Here, equivalence is

defined up to holomorphic automorphisms commuting with the Higgs field.

Note that we have already seen (3.1) in line (2.4); (3.1) is satisfied if and only if

the connection

A+ φ+ φ∗H

is flat. Furthermore, Theorem 2.9 implies that the holonomy of this flat connection

is reductive since the metric H is harmonic; namely ∂
A

(φ) = 0. This defines a map,

M0,n(X)→ χ(Σ,SL(n,C)).

Additionally, this map has an inverse since every reductive representation yields

a flat bundle with a harmonic metric, which in turn gives rise to a Higgs bundle

solving (3.1), thus a poly-stable Higgs bundle. Using suitable topologies (arising

from the C∞-topology on tensors and the topology of pointwise convergence on

representations) on the Dolbeaut and Betti moduli space, the following theorem is

called the Non-Abelian Hodge correspondence:

Theorem 3.4. The map described above yields a homeomorphism:

M0,n(X) ' χ(Σ,SL(n,C)).

Remark: It is very important to note that this homeomorphism:

(1) Depends on the point σ ∈ T in a complicated way.

(2) Passes through the transcendental procedure of constructing an equivariant

harmonic map.

A very interesting (to the author) future direction is to explore what the (well

developed) theory of harmonic maps into symmetric spaces might have to say about

the geometric nature of this isomorphism. A basic, but difficult question is the

following:

• Can one describe the space of all quasi-Fuchsian representations χ(Σ,SL(2,C))

purely in terms of the associated Higgs bundles?

The space M0,n(X) has many fascinating structures (complex symplectic, hyper-

Kähler, quasi-projective variety) which we will not explore here at all. We mention

two very important features:

(1) Sending φ → eiθφ not only preserves stability, but also preserves the har-

monic metric. This action descends to the space M0,n(X) and has fixed

points which are the critical sub-manifolds for a Morse-Bott function on

M0,n(X). This allows one, in a number of cases, to compute the rational

cohomology of M0,n(X) and in particular, the number of connected com-

ponents. This is one of the greatest success stories involving the theory
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of Higgs bundles, and is still an active area whose genesis lies in the epic

paper of Atiyah and Bott [AB83].

(2) Let (p2, ..., pn) be a basis of the conjugation invariant polynomials on End(Cn)

with deg(pi) = i. Then given a Higgs field φ,

pi(φ) ∈ H0(X,Ki)

and by the conjugation invariance this descends to a map:

F : M0,n(X)→
n⊕
i=2

H0(X,Ki)

called the Hitchin fibration. This is a proper map whose generic fibers are

Abelian varieties. With respect to a symplectic structure on M0,n(X), this

is actually a moment map for an algebraically completely integrable Hamil-

tonian system. Namely, there exists a maximal set of independent Poisson

commuting functions whose Hamiltonian vector fields generate flows which

lie on the level sets of the Hitchin fibration. Lastly, the H0(X,K2) entry

is the Hopf differential of the harmonic map associated to that poly-stable

Higgs bundle (exercise!).

4. Examples of Higgs bundles and construction of Hitchin component

We begin this section with the Higgs bundle ”version” of the first section of

these notes. Then we will close with Hitchin’s construction of what is now known

as the Hitchin component, a component of real representations of π into SL(n,R)

naturally containing the Fricke space of hyperbolic uniformizations of Σ.

As before, we fix a point σ ∈ T and denote X = (Σ, σ). Consider the short exact

sequence of sheaves

1→ Z2 → O∗ → O∗ → 1,

where the second arrow takes any locally holomorphic non-vanishing function f to

its square f2. The relevant segment of the long exact sequence in sheaf cohomology

is

H1(X,Z2)→ H1(X,O∗)→ H1(X,O∗)→ H2(X,Z2).

The arrow

w2 : H1(X,O∗)→ H2(X,Z2)

computes the mod 2-reduction of the degree (the second Steifel-Whitney class) of

the line bundle represented by a class in H1(X,O∗). Since the canonical bundle

of holomorphic 1-forms K has even degree equal to 2g − 2, it maps under w2 to

zero, hence, by the long exact sequence above, there exists a line bundle K
1
2 which

squares to K. Furthermore, there are

|H1(X,Z2)| = |Z2g
2 | = 22g

such inequivalent choices; pick one. Form the holomorphic rank-2 vector bundle

V = K
1
2 ⊕K− 1

2 .

Then,

K ⊗ End(V ) = K ⊕K2 ⊕O ⊕K
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whereby if α ∈ H0(X,K2),

φ =

(
0 α

1 0

)
is a well-defined Higgs field. Here, 1 is the constant function, a global section of

the sheaf O of holomorphic functions on X.

This is clearly holomorphic as each entry is holomorphic. Furthermore, there are

no non-zero φ−invariant sub-bundles unless α = 0 in which case the only invariant

sub-bundle is K−
1
2 which is of negative degree. Hence, (V, φ) is a stable Higgs

bundle. Additionally, det(V ) = O, thus Theorem 3.3 implies that there exists an

Hermitian metric on Hα on V with Chern connection Aα such that

FA = −[φ, φ∗H ].(4.1)

If the metric was not diagonal, then relative to the holomorphic splitting of V

an off diagonal entry would appear in the connection form of Aα, but this would

imply that the splitting was not holomorphic since the connection A is the Chern

connection. Thus, the metric has the form

Hα =

(
h
− 1

2
α 0

0 h
1
2
α

)
where hα is an Hermitian metric on the holomorphic tangent bundle K−1. Now we

compute,

φ∗H = H−1
α φ

T
Hα =

(
0 hα1

h−1
α α 0

)
.

Thus,

−[φ, φ∗H ] =

(
1− h−2

α αα 0

0 −1 + h−2
α αα

)
hαdz ∧ dz.

Note, h−2
α αα = ‖α‖2hα is a scalar-valued function; the norm of α with respect to

hα. The Chern connection takes the form

Aα =

(
1
2a
−
α 0

0 1
2aα

)
where aα is the connection 1-form of the metric hα on K−1. Thus, (4.1) reduces to

a single scalar equation:

F aα = −2(1− ‖α‖2hα)hαdz ∧ dz.

Let’s inspect what we have, when α = 0 the above equation reads

F aα = −2h0dz ∧ dz.

This immediately implies that the real part of h0 furnishes a metric of constant

sectional curvature −4 on the surface Σ. Thus, this special case of solving the

self-duality equations is equivalent to solving the uniformization theorem. Hitchin

[Hit87] showed much more:

Theorem 4.1. Consider the metric hα above on K−1. Then the expression,

ĥα = αdz2 + (1 + ‖α‖2hα)hαdzdz + αdz2
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defines a Riemann metric on K−1 which has sectional curvature equal to −4. This

assignment gives a parameterization of the Fricke space by the space of holomorphic

quadratic differentials.

Let us return briefly to the discussion at the beginning of these notes. The

following facts are a rewarding exercise for the interested reader:

• The holomorphic quadratic differential α is the Hopf differential of the

unique harmonic map isotopic to the identity between from (Σ, σ)→ (Σ, ĥα).

• The Hitchin map (choose the ad-invariant quadratic polynomial given by

minus the determinant) F : M0,2(X)→ H0(X,K2) takes the Higgs field

φ =

(
0 α

1 0

)
to α. Thus, the Hitchin fibration admits a section whose image picks out an

entire component of representations lying in the split real form of SL(2,C).

The moral of this story is that these examples of Higgs bundles are none other

than the Harmonic maps parameterization of the Fricke space dressed is slightly

fancier language (compare with [Wol89]). The strength of this language is that it

generalizes and reveals a wealth of structure which was hidden before exploiting

the holomorphic geometry.

5. The SL(n,R) Hitchin component

This section is a condensed presentation of the material in [Hit92].

We now arrive at the goal of these notes, the construction of the Hitchin com-

ponent for the linear group SL(n,R). In hindsight, this is a natural generalization

of the work in the previous section, and it shows the power of the Higgs bundle

theory to reveal new objects, which have turned out to be very geometric.

There is a unique n-dimensional irreducible representation of SL(2,C) given by

the action of SL(2,C) on homogeneous polynomials of degree n− 1 in 2 variables.

This representation is the (n−1)-th symmetric power of the standard 2-dimensional

representation. Recall the vector bundle above,

V = K
1
2 ⊕K− 1

2 .

The (n− 1)-th symmetric power of this vector bundle is given by

Sn−1(V ) = K
n−1
2 ⊕K

n−3
2 ⊕ ...⊕K−

n−3
2 ⊕K−

n−1
2 .

The Higgs field becomes

φ =



0 (n− 1) 0 · · · 0

α 0 2(n− 2) · · · 0

0 α 0 3(n− 3) · · · 0
...

. . .
. . .

...

0
. . . (n− 1)

0 0 · · · 0 α 0


.

Now, we have the liberty to do something with the Higgs fields: take (n−1) elements

(α2, α3, ..., αn) ∈
n⊕
i=2

H0(X,Ki).
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Form the new Higgs field, while keeping the holomorphic vector bundle Sn−1(V )

fixed,

φ̃ =



0 (n− 1) 0 · · · 0

α2 0 2(n− 2) · · · 0

α3 α2 0 3(n− 3) · · · 0
...

...
. . .

. . .
. . .

...

αn−1
. . . (n− 1)

αn αn−1 · · · α3 α2 0


.

A linear algebra calculation (a more clever argument can be found in Hitchin’s

paper [Hit92]) shows that the Higgs bundle (Sn−1(V ), φ̃) is Higgs stable. Thus,

the Theorem of Hitchin and Simpson (Theorem 3.3) guarantees the existence of an

Hermitian metric H with Chern connection A such that the self-duality equations

are satisfied.

The first question we wish to attack is the following: what are the properties of

the holonomy of the flat connection

B = A+ φ̃+ φ̃∗H?

For this we will use the following very important Proposition (see [Hit92], [Sim92]).

Proposition 5.1. Let ρ ∈ χ(Σ,SL(n,C)) correspond to a Higgs bundle (V, φ).

(Here the holomorphic structure on V is implicit). Then the Higgs bundle (V ∗, φt)

corresponds to the conjugate representation ρ.

Thus, fixed points (up to holomorphic automorphism conjugating the Higgs field)

of the involution

η : (V, φ) 7→ (V ∗, φt)

correspond to real representations.

Returning to our Higgs bundle (Sn−1(V ), φ̃), the anti-diagonal holomorphic au-

tomorphism 
0 0 · · · 1

0 · · · 1 0
... . .

. ...

0 1 · · · 0

1 0 · · · 0


maps it to (Sn−1(V )∗, φ̃t). Hence, on the moduli space of Higgs bundles it is fixed

by the involution η. Thus, by the previous Proposition 5.1 the holonomy of the flat

connection B to which this Higgs bundle corresponds takes values in SL(n,R).

Next, we wish to show that we have constructed an entire component of real

representations: the Hitchin component. There is a basis of conjugation invariant

polynomials {p2, ..., pn} such that

pi(φ̃) = αi.

Using these to define the Hitchin fibration, we have constructed a section

s :

n⊕
i=2

H0(X,Ki)→M0,n(X).
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Simply by virtue of being a section, the map s is injective and has closed, con-

nected image. An additional argument (see [Hit92]) shows that s takes values in

the smooth part of the moduli space of Higgs bundles. Also, the differential of s

is injective. Thus, using the implicit function theorem, the image of s is a closed,

connected sub-manifold of M0,n(X). Using Corlette’s theorem to identity Higgs

bundles with reductive representations, we obtain a closed, connected sub-manifold

of χ(Σ,SL(n,R)).

At a smooth point of the character variety χ(Σ,SL(n,R)), the index theorem

can be used to show that its dimension is |χ(Σ)| × dim(SL(n,R)). Meanwhile, a

calculation employing the Riemann-Roch theorem yields that the dimension of the

Hitchin base is equal to,

dim

(
n⊕
i=2

H0(X,Ki)

)
= |χ(Σ)|

n−1∑
i=1

(2i+ 1)

= |χ(Σ)|(n2 − 1)

= |χ(Σ)|dim(SL(n,R)).

Remarkably, this is the same as the dimension of the character variety χ(Σ,SL(n,R))!

Thus, the section s which was previously known to be an immersion is a submer-

sion as well. Applying the inverse function theorem, the image of s is open. As we

already know it is closed and connected, this proves that the image of s is a single

component of χ(Σ,SL(n,R)). This is the component which Hitchin identified that

is now known as the Hitchin component.

We close with a question: How can we infer geometric properties of the repre-

sentations in the Hitchin component from differential-geometric properties of the

equivariant harmonic map, or equivalently, from the harmonic metric on the asso-

ciated flat bundle? For example, are there identifiable properties of the harmonic

map which guarantee the representation is discrete?

At least for the author, these types of questions are some of the most fascinating

surrounding the theory of Higgs bundles. Even in the rank 2 case, the situation is

still very murky.
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GEOMETRIC CHARACTERIZATION OF HITCHIN

REPRESENTATIONS

GUILLAUME DREYER

Abstract. These notes are an attempt of summary of Labourie-Guichard’s

characterization of Hitchin representations established in [La] and [Gui3] via
the notion of hyperconvexity.

1. Hyperconvexity

We discuss the notions of hyperconvex representation and Anosov representa-
tions. In particular, we prove that hyperconvex representations are Anosov.

1.1. Hyperconvex representations.

Definition. A flag curve F : ∂∞S̃ → Flag(Rn) is hyperconvex if it satisfies the
following two conditions:

(1) for every k–tuple of distinct points x1, . . . , xk ∈ ∂∞S̃, for every k–tuple of
integers m1, . . . , mk such that m1 + · · ·+mk = n,

Rn = F(m1)(x1)⊕ · · · ⊕ F(mk)(xk);

(2) for every k–tuple of distinct points x1, . . . , xk ∈ ∂∞S̃, for every k–tuple of
integers m1, . . . , mk such that m1 + · · ·+mk = m ≤ n,

lim
(xi)→x
xi 6=x

F(m1)(x1)⊕ · · · ⊕ F(mk)(xk) = F(m)(x).

Note that a hyperconvex flag curve is in particular continuous. Besides, the

image of the projective curve F(1) : ∂∞S̃ → RPn−1 is a C1–embedded curve.

Definition. A homomorphism ρ : π1(S) → PSLn(R) is a hyperconvex representa-

tion if there exists a ρ–equivariant, hyperconvex flag curve Fρ : ∂∞S̃ → Flag(Rn).

Example. Let ρ0 : π1(S) → PSLn(R) be a n–Fuchsian representation, namely ρ0
is a homomorphism of the form

ρ0 = ι ◦ r
where: r : π1(S) → PSL2(R) is a Fuchsian homomorphism; and ι : PSL2(R) →
PSLn(R) is the preferred homomorphism defined by the n–dimensional, irreducible

representation of SL2(R) into SLn(R). Then ρ0 is hyperconvex. Identify ∂∞S̃ with
RP1 viewed as the set of nonzero homogenous polynomials of the form aX + bY
up to scalar multiplication. The associated equivariant flag curve Fρ0 is defined as

follows: for every i = 1, . . . , n−1, F
(i)
ρ0

(
[aX+bY ]

)
is the i–dimensional subspace of

homogenous polynomials of the form a0X
n−1+a1X

n−2Y + · · ·+an−1Y n−1 that are
multiples of (aX+bY )n−i. One easily verifies that Fρ0 is hyperconvex as it satisfies

1
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both conditions (1) and (2). The projective curve F
(1)
ρ0 is called the Veronese’s

embedding of RP1 in RPn−1.

Exercise. Show that the “Veronese” flag curve is hyperconvex.

1.2. Anosov representations. Set R̄n = Rn/{±Id}; note that PSLn(R) acts on
R̄n. Given a homomorphism ρ : π1(S) → PSLn(R), let T 1S ×ρ R̄n → T 1S be the
flat twisted R̄–bundle associated with ρ.

Definition. A homomorphism ρ : π1(S) → PSLn(R) is an Anosov representation

if there exists a ρ–equivariant flag curve Fρ : ∂∞S̃ → Flag(Rn) that satisfies the
following two conditions:

(1) for every pair of distinct points x, y ∈ ∂∞S̃, for every k = 1, . . . , n− 1,

Rn = F(k)
ρ (x)⊕ F(n−k)

ρ (y);

(2) let (Gt)t∈R be the lift in the flat bundle T 1S ×ρ R̄n of the geodesic flow
(gt)t∈R; the flag curve Fρ provides a line splitting V1 ⊕ · · · ⊕ Vn of T 1S ×ρ
Rn → T 1S that is invariant under the action of (Gt)t∈R; we require the
action of (Gt)t∈R to be Anosov in the following sense; there exist a Rie-
mannian metric ‖ ‖ on the fibres of T 1S×ρ R̄n and some constants A, a > 0
such that, for every i = 1, . . . , n − 1, for every t > 0, for every u ∈ T 1S,
for every unit vectors Xi(u) ∈ Vi(u) and Xi+1(u) ∈ Vi+1(u),

‖GtXi(u)‖gt(u)
‖GtXi+1(u)‖gt(u)

≤ Ae−at.

A consequence of the Anosov dynamics is that an Anosov representation ρ admits

a unique equivariant flag curve Fρ satisfying (1) and (2). In addition, Fρ : ∂∞S̃ →
Flag(Rn) is Hölder continuous. See [La, Gui3, GuiW] for details.

Example. A n–Fuchsian ρ0 = ι ◦ r is Anosov. It is convenient to look at the

situation in the universal cover T 1S̃ × R̄n. Given a base point ũ0 ∈ T 1S̃, we can

identify T 1S̃ with PSL2(R); the action of the geodesic flow (gt)t∈R on T 1S then

identifies with the right action of the subgroup
{(

et/2 0
0 e−t/2

)}
t∈R

on PSL2(R).

The Veronese flag curve Fρ0 provides a line splitting Ṽ1 ⊕ · · · ⊕ Ṽn of T 1S̃ × R̄n
that is invariant under the action of the lift (Gt)t∈R. Now, since T 1S is compact,
to show that the flow (Gt)t∈R is Anosov in the sense of (2), we may choose any
suitable metric on the bundle T 1S ×ρ0 R̄n for which the action is Anosov.

Pick a metric ‖ ‖ũ0
on the fibre R̄nũ0

above ũ0; for every ũ = gũ0 ∈ T 1S̃ where

g ∈ PSL2(R), for every X ∈ R̄nũ, set

‖X‖ũ :=
∥∥∥ι(g)

−1
X
∥∥∥
ũ0

.

This defines a metric on the fibres of the bundle T 1S̃ × R̄n. By construction, it
is invariant under the left action of PSL2(R) and thus descends to a well-defined
metric on the bundle T 1S ×ρ0 R̄n. Observe that, if ũ = gũ0 where g ∈ PSL2(R),
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then gt(ũ) = (gatg
−1)ũ where at =

(
et/2 0
0 e−t/2

)
. Because of the flat connection,

‖GtX‖gt(ũ) = ‖X‖gt(ũ)
= ‖X‖(gatg−1)ũ

=
∥∥∥ι(gatg−1)

−1
X
∥∥∥
ũ0

=
∥∥ι(g)ι(at)

−1ι(g)−1)X
∥∥
ũ0
.

It is easy to conclude from the above relation and the definition of the homo-
morphism ι : PSL2(R) → PSLn(R) that the action of the flow (Gt)t∈R on the line

splitting Ṽ1 ⊕ · · · ⊕ Ṽn → T 1S provided by the Veronese flag curve Fρ0 satisfies the
Anosov condition (2).

1.3. Hyperconvex implies Anosov. We now show the following result.

Theorem 1. Let ρ be a hyperconvex representation. Then ρ is Anosov.

Sketch of the proof. Consider the line bundle V ∗i+1 ⊗ Vi → T 1S, endowed with the

following metric ‖ ‖ on the fibres: for every u ∈ T 1S, for every ψ ∈ V ∗i+1 ⊗ Vi(u),
set

‖ψ‖u =

∣∣∣∣ 〈αi, ψ(Xi+1)〉 〈αi+1, Z0〉
〈αi+1, Xi+1〉 〈αi, Z0〉

∣∣∣∣
where: ũ = (x+, x0, x−) ∈ T 1S̃ is a lift of u; Z0 ∈ F

(1)
ρ (x0); Xi+1 ∈ Ṽi+1(ũ); and

αj is a linear form with ker(αj) = F
(j−1)
ρ (x+) ⊕ F

(n−j)
ρ (x−). Note that, because

of the transversality condition (1) of a hyperconvex flag curve, ‖ ‖ is well defined;
moreover, it is clearly independent of the choices of Z0, Xi+1 and αj .

To prove the condition (2), it is enough to show that the action of the flow
(Gt)t∈R on the line bundle V ∗i+1 ⊗ Vi is exponentially contracting. To do so, we
begin with proving that ‖Gtψ‖gt(u) converges to 0 as t goes to +∞.

Because of the flat connection,

‖Gtψ‖gt(u)
‖ψ‖u

=
‖ψ‖gt(u)
‖ψ‖u

=

∣∣∣∣ 〈αi+1, Zt〉 〈αi, Z0〉
〈αi, Zt〉 〈αi+1, Z0〉

∣∣∣∣
where: gt(ũ) = (x+, xt, x−), and Zt ∈ F

(1)
ρ (xt). Since limt→+∞ F

(1)
ρ (xt)⊕F(i−1)

ρ (x+) =

F
(i)
ρ (x+), we may assume that Zt converges to a vector Z∞ ∈ F

(i)
ρ (x+)−F(i−1)

ρ (x+).
As a result,

lim
t→+∞

〈αi, Zt〉 = 〈αi, Z∞〉 6= 0;

lim
t→+∞

〈αi+1, Zt〉 = 〈αi+1, Z∞〉 = 0.

It follows that limt→+∞ ‖Gtψ‖gt(u) = 0.

The exponential contraction comes as a consequence of the compacity of T 1S.
First of all, note that, since we are dealing with a flow, it is enough to show that
there exists some t0 > 0 so that, for every t ≥ t0, for every u ∈ T 1S, for every
ψ ∈ V ∗i+1 ⊗ Vi(u),

‖Gtψ‖gt(u) <
1

2
‖ψ‖u .

By contradiction, let tq → +∞, ũq = (x+,q, xq, x−,q) ∈ T 1S̃ and ψq ∈ V ∗i+1 ⊗
Vi(uq) be sequences for which

∥∥Gtqψq∥∥gtq (uq)
≥ 1/2 ‖ψq‖gtq (uq)

. By compacity of
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T 1S and π1(S)–invariance, we may assume that ũq converges to ũ∞ = (x+, x∞, x−).
Thus: set gtq (ũq) = (x′+,q, x

′
q, x
′
−,q); we have x′q −→q→+∞ x+. Let∥∥Gtqψq∥∥gtq (uq)

‖ψq‖uq

=
‖ψq‖gtq (uq)

‖ψq‖uq

=

∣∣∣∣∣
〈
αi+1, Z

′
q

〉
〈αi, Zq〉〈

αi, Z ′q
〉
〈αi+1, Zq〉

∣∣∣∣∣ > 1

2

where: Zq ∈ F
(1)
ρ (xq); and Z ′q ∈ F

(1)
ρ (x′q). Since limq→+∞ F

(1)
ρ (x′q) ⊕ F

(i−1)
ρ (x+) =

F
(i)
ρ (x+), we may assume that Z ′q converges to a vector Z ′∞ ∈ F

(i)
ρ (x+)−F(i−1)

ρ (x+),
which, by the previous reasoning, yields a contradiction. See [Gui3, §3], Proposition
18 for additional details. �

Note that in the above proof, we only make use of the transversality condition for
a triple of flags, and of the limit condition (2) in the case where i = 1. Therefore,
the hyperconvex condition appears to be notably more restrictive than Anosov.

2. Openess of hyperconvex representations

2.1. Anosov 3–hyperconvex representations.

Definition. A flag curve F : ∂∞S̃ → Flag(Rn) is 3–hyperconvex if for every triple

of distinct points x, y, z ∈ ∂∞S̃, for every triple of integers j, k, l,

Rn = F(j)(x)⊕ F(k)(y)⊕ F(l)(z).

Let A3(S) ⊂ RPSLn(R)(S) be the set of Anosov representations that are 3–

hyperconvex. Note that A3(S) contains the set of hyperconvex representations
H(S).

Lemma 2. The set A3(S) is open in RPSLn(R)(S).

Proof. Let ρ0 be an Anosov representation. There exists an open subset U 3 ρ0
such that the map

Φ: U × ∂∞S̃ → Flag(Rn)

(ρ, x) 7→ Fρ(x)

is continuous.
Let ∂∞S̃

3,∗ be the set of triple of distinct points in ∂∞S̃; recall that ∂∞S̃
3,∗

identifies with T 1S̃. Consider the map

Ψ: U ′ × ∂∞S̃3,∗ → N(
ρ, (x, y, z)

)
7→ dim

(
Fρ(x) + Fρ(y) + Fρ(z)

)
.

By compacity of T 1S and π1(S)–invariance of Ψ, it follows from the continuity of
Φ that there exists U ′ ⊂ U for which Ψ is constant and equal to n. See [Gui3, §4],
Proposition 20. �

The flag curve of an Anosov 3–hyperconvex representation satisfies the following
regularity property.

Proposition 3. Let Fρ : ∂∞S̃ → Flag(Rn) be the flag curve of an Anosov 3–
hyperconvex representation ρ. Then, for every integers m = k + l ≤ n, for every

x ∈ ∂∞S̃,
lim

(y,z)→x
y 6=z

F(k)
ρ (y)⊕ F(l)

ρ (z) = F(m)
ρ (x).
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Note that the above limit implies the existence of a tangent line to the projective

curve F
(1)
ρ : the (image of the) curve Fρ is C1. Besides, Theorem 1 shows that, if

Fρ is “smooth” enough, then ρ is Anosov. As it will become more apparent in the
proof, Proposition 3 to some extent shows that the Anosov property is necessary
to guarantee enough regularity for the flag curve Fρ.

Sketch of the proof in the case where l = 1. For k ≤ n, consider the map

ηk : (y, z) 7→

{
F
(k−1)
ρ (y)⊕ F

(1)
ρ (z) if y 6= z;

F
(k)
ρ (y) if y = z.

We want to show that ηk is continuous; clearly, we are only concerned with points

of the form (y, y). Let I ⊂ ∂∞S̃ be an interval; and let x− be a point in the

complement ∂∞S̃− I. For every y, z ∈ I, set ξn−1(y, z) = ηk(y, z)⊕F
(n−k−1)
ρ (x−).

For every x+ ∈ I, it follows (see exercise below) from the Anosov property for
the line decomposition V1 ⊕ · · · ⊕ Vn → T 1S and the 3–hyperconvexity that

lim
x→x+

ξn−1(x+, x) = ξn−1(x+, x+).

Moreover, pick x0 ∈ I. The contraction property enables us to show that the
convergence is uniform, namely, for every ε > 0, for every y+ ∈ I, there exist
an interval I ′ ⊂ I that contains y+, and a constant δ > 0, such that, for every
x+, x ∈ I ′ with dist∂∞S̃(x+, x) ≤ δ,

distGrn−1(Rn)

(
ξn−1(x+, x), ξn−1(x+, x+)

)
< ε.

Hence, by continuity of the map y 7→ ξn−1(y, y),

lim
(x+,x)→y+

ξn−1(x+, x) = ξn−1(y+, y+).

Finally, since ηk = ξn−1 ∩ ηk+1, we obtain the continuity of the map ηk for all
k ≤ n − 1 by descending induction. The case when l ≥ 2 is identical. See [Gui3,
§4], Proposition 20 for additional details. �

Exercise. Let x+ ∈ I, and let xq ∈ I be a sequence converging to x+ as q → ∞.
Using the techniques introduced in the proof of Theorem 1, show that, for every
ε > 0, there exist an integer Q and a constant C > 0 such that, for every sequence

of vectors Zq ∈ F
(k−1)
ρ (x+)⊕ F

(1)
ρ (xq)⊕ F

(n−k−1)
ρ (x−),

distRn

(
Zq,F

(k)
ρ (x+)⊕ F(n−k−1)

ρ (x−)
)
≤ C ‖Zq‖ ε.

Conclude that limx→x+
ξn−1(x+, x) = ξn−1(x+, x+).

2.2. Openess. Let H(S) be the set of hyperconvex representations.

Theorem 4. H(S) is open in RPSLn(R)(S).

Let Gri,+(Rn) be the Grassmannians of oriented vector spaces Gri,+(Rn); it a
2–cover of Gri(Rn). The observation below will come in very handy.

Lemma 5. Let F : I → Flag(Rn) be a hyperconvex flag curve defined on an (ori-

ented) interval I ⊂ ∂∞S̃. For every i = 1, . . . , n − 1, suppose that the map
F(i) : I → Gri(Rn) lifts to F(i),+ : I → Gri,+(Rn) so that

lim
(y>z)→x

F(i−1),+(y)⊕ F(1),+(z) = F(i),+(x).
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Then there exists an orientation Rn,+ of Rn such that, for every n1 + · · ·+nk = n,
for every x1 > · · · > xk,

Rn,+ = F(n1),+(x1)⊕ · · · ⊕ F(nk),+(xk).

Proof. Left to the reader as an exercise. �

Sketch of the proof of Theorem 4. The proof requires several steps. The key idea
is the following: if U ⊂ A3(S) is a contractible neighborhood of a hyperconvex
representation ρ0, then all representations in U are hyperconvex.

Let ρ ∈ U . By induction on k, we prove that, for every x ∈ ∂∞S̃,

H(k):


for every k–tuples of integers m1, . . . , mk,

lim(xi)→x
xi 6=x

F
(m1)
ρ (x1)⊕ · · · ⊕ F

(mk)
ρ (xk) = F

(m)
ρ (x).

where m = m1 + · · ·+mk ≤ n− 1.
Note that H(1) is true by continuity of the flag map Fρ, and H(2) is true by

Proposition 3.
Let us focus attention on the special case of H(3) where m1 = n − 3, m2 = 1,

m3 = 1. We want to show that

lim
(xi)→x
xi 6=x

F(n−3)
ρ (x1)⊕ F(1)

ρ (x2)⊕ F(1)
ρ (x3) = F(n−1)

ρ (x).(1)

Let I ⊂ ∂∞S̃ be an interval that contains x. Pick an orientation on I. It is enough
to analyze the case where the above limit is taken under the extra condition that
x1 > x2 > x3. The advantage then resides in the possibility to lift the situation
in the Grassmannians of oriented vector spaces Gri,+(Rn). More precisely, let

F
(1),+
ρ : I → Gr1,+(Rn) that lifts F

(1)
ρ ; for every k ≤ n − 1, define a lift F

(k),+
ρ and

an orientation Rn,+ for Rn via the following relations:

F(k+1),+
ρ (x) = lim

(y>z)→x
F(k),+
ρ (y)⊕ F(1),+

ρ (z);

Rn,+ = F(n−1),+
ρ (y)⊕ F(1),+

ρ (z) if y > z.

We begin with studying cluster points of converging sequences. Let (x >) x1,q >

x2,q > x3,q be a triple of sequences that converge to x ∈ ∂∞S̃. Assume that the
sequence

P (n−1),+
q = F(n−3),+

ρ (x1,q)⊕ F(1),+
ρ (x2,q)⊕ F(1),+

ρ (x3,q)

converges to the oriented hyperplan P (n−1),+ ∈ Grn−1,+(Rn). By Proposition 3,

P (n−1) contains F
(n−2)
ρ (x). Hence, for w < x, the sequence of oriented lines (3–

hyperconvexity!)

Z(1),+
q = P (n−1),+

q ∩ F(2),+
ρ (w)

converges to the oriented line Z(1),+ = P (n−1),+ ∩ F
(2),+
ρ (w). We want to prove

that

Z(1),+ = F(n−1),+
ρ (x) ∩ F(2),+

ρ (w)

which will imply that P (n−1),+ = F
(n−1),+
ρ (x).
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Let D
(n−1),+
q and E

(n−1),+
q be the sequences of oriented hyperplans defined by

D(n−1),+
q = F(n−2),+

ρ (x1,q)⊕ F(1),+
ρ (x3,q)

E(n−1),+
q = F(n−3),+

ρ (x1,q)⊕ F(2),+
ρ (x3,q).

A first step is to show that both sequences converge to the oriented hyperplan
F(n−1),+(x). The convergence without the orientation nonsense is guaranteed by

Proposition 3. Now, limq→+∞D
(n−1),+
q = F(n−1),+(x) is true by definition of the

lift F(n−1),+. For the sequence E
(n−1),+
q , it is enough to show that

E(n−1),+
q ⊕ F(1),+

ρ (w) = F(n−1),+
ρ (x)⊕ F(1),+

ρ (w)(= Rn,+).

This is the moment when the orientation nonsense plays a central rôle. The open
subset U being contractile, we can deform the flag curve Fρ into the hypercon-
vex flag curve Fρ0 through a continuous family of Anosov 3–hyperconvex curves
(Fρt)t∈[0,1] ⊂ U with Fρ1 := Fρ. Observe then that the lift Fρ,+ for Fρ extends a
lift (Fρt,+)t∈[0,1] so that, for every t ∈ [0, 1],

F(n−3),+
ρt (x1,q)⊕ F(2),+

ρt (x3,q)⊕ F(1),+
ρt (w)

defines the same orientation on Rn. When t = 0, the Lemma 5 applies to the
hyperconvex flag curve Fρ0 : it guarantees that the orientations “behave well” when
we take limits. As a result,

E(n−1),+
q ⊕ F(1),+

ρ (w) = F(n−3),+
ρ1 (x1,q)⊕ F(2),+

ρ1 (x3,q)⊕ F(1),+
ρ1 (w)

= F(n−3),+
ρ0 (x1,q)⊕ F(2),+

ρ0 (x3,q)⊕ F(1),+
ρ0 (w)

= F(n−1),+
ρ0 (x)⊕ F(1),+

ρ0 (w)

= F(n−1),+
ρ1 (x)⊕ F(1),+

ρ1 (w).

We can conclude via the following observation. Consider the two sequences

Z(1),+ ⊕D(n−1),+
q

Z(1),+ ⊕ E(n−1),+
q

of Grn,+(Rn). It is easy to see that these sequences have opposite orientations.

Moreover, recall that the limits of both sequences each contain Z(1),+ and F
(n−1),+
ρ (x).

Therefore, Z(1) must be contained in F
(n−1)
ρ (x).

Regarding the existence of the limit (1) (un peu passé sous silence..): it comes as
a consequence that (nonoriented and oriented) Grassmannians are compact spaces.
Therefore, every sequence that admits a unique cluster point is convergent. See
[Gui3, §5], Theorem 23 for additional details. �

3. Closedness of hyperconvex representations

Theorem 6. The set of hyperconvex representations H(S) is equal to the union of
the Hitchin components of RPSLn(R)(S).

The proof of Theorem 6 strongly relies on algebraic group techniques; in other
words, on aime ou on n’aime pas... It makes great use of results established in
[Gui2].

Here are two results that are essential in the following; the first one is a rather
easy observation, while the second one requires hard work and is one of the main
keys in the proof of Theorem 6.
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Lemma 7. Let ρ be a hyperconvex representation. Then ρ is strongly irreducible.

Proof. Left to the reader as an exercise. See [Gui3, §3], Propositions 14 and 15. �

Lemma 8. Let ρ be a representation that is strongly irreducible and limit of hy-
perconvex representations. Then ρ is hyperconvex.

Proof. Left to the reader as a nightmare. See [La, §9]. �

3.1. The case where the genus is “large”. Let us denote by H(S) be the
adherence of the set of hyperconvex representations H(S). If the genus of the
surface is large enough (in relation to n), Theorem 6 comes as a consequence of the
following proposition, that, along with Lemma 8, constitute the keys of the proof.

Proposition 9. H(S) is open in RPSLn(R)(S).

Proof. See [Gui3, §6], Proposition 26. �

As a consequence of Proposition 9, since H(S) contains the n–Fuchsian repre-

sentations, H(S) contains the Hitchin components.

Sketch of the proof of Theorem 6. By Proposition 9, H(S) is the union of connected
components of RPSLn(R)(S); in particular, since H(S) contains all n–Fuchsian re-

presentations, H(S) contains the Hitchin components. Besides, it is a consequence
of [Hit] that all representations in the Hitchin components are strongly irreducible;
hence, by Lemma 8,

H(S) ∩Hitchin components = H(S) ∩Hitchin components

Finally, again due to [Hit], representations that are not Hitchin can be deformed
into representations valued in the compact Lie group PSOn(R); as a result, such
components can not contain any discrete representation. �

3.2. The general case. The key lies in two simple observations that enable us to
go from the large genus case back to the small genus case.

Lemma 10. Let Γ be a finite index subgroup of π1(S). Then

(1) ρ : π1(S) → PSLn(R) is hyperconvex if and only if ρ : Γ → PSLn(R) is
hyperconvex;

(2) ρ : π1(S)→ PSLn(R) is Hitchin if and only if ρ : Γ→ PSLn(R) is Hitchin.

Proof. Left to the reader as an exercise. �
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[Gui1] Olivier Guichard, Une dualité pour les courbes hyperconvexes, Geom. Dedicata 112 (2005),
pp. 141–164.
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A PRIMER ON COHOMOLOGICAL METHODS IN

REPRESENTATION THEORY OF SURFACE GROUPS

TOBIAS HARTNICK

1. Introduction

These are extended notes from a series of talks that the author delivered in a
workshop on Higher Teichmüller Thurston Theory in Northport, Maine in July
2013. The main story covered in this series of talks is centered around the following
three aspects:

• We want to introduce some basic cohomological tools, which are useful in
general representation theory of groups (and beyond). In particular, we
discuss Gromov-Traubel-Johnson’s bounded cohomology of discrete groups.
• We give one particularly simple (but in some sense prototypical) example

which illustrates how cohomological tools can be used to study representa-
tions of surface groups. Namely, we give a purely cohomological condition
(taken from [1]), which ensures that a given representation of a surface
group into a Lie group is faithful and has discrete image.
• We explain how various geometric and/or topological assumptions (max-

imal Toledo invariant, existence of an Anosov structure over the Shilov
boundary) imply that a representation is discrete and faithful by exploiting
this cohomological criterion. Thereby we prove some simple special cases
of results from [8] and [1].

We emphasize that there are many other things about representations besides dis-
creteness and faithfulness that one can study using cohomological tools, even for
surface groups; however, for limitations of time and space we will mostly focus on
these two properties.

We have decided to present the material in a systematic rather than in a historical
order. Let us point out right from the beginning that none of the results presented
here are new, albeit a few details are presented differently than in the standard lit-
erature. All the material concerning group cohomology presented here is completely
standard and can be found in any textbook on the subject, see e.g. [2]. Since it is
easily accessible, we give basically no proofs. The modern theory of bounded group
cohomology is not yet completely accessible in textbook form (although [12] covers
some major parts of it). The two dissertations [29, 3] provide a good overview.
Classical sources include [27, 23, 26, 22].

The whole uncensored story how bounded cohomology can be used to study repre-
sentations of surface group is told in the recent survey [5], which covers in particular
the breakthrough results from [8]. The present note was written with an eye to-
wards that survey. This means that almost everything we say here, is also said in

1
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[5] in greater generality. In particular, while we restrict ourselves to closed surfaces,
[5] treats also the case of surfaces with boundary. It is our hope that the present
notes can serve as an elementary introduction to [5]. Concerning bibliographical
references we strongly recommend the reader to take a look at [5], since we will not
be able to discuss or even repeat the more than 100 references here. It is not quite
clear to the author what the historical starting point of this whole circle of ideas
actually is, but Milnor’s famous paper [28] was certainly a major early inspiration.

Let us mention explicitly the few places in which we deviate from [5]. Firstly and
most importantly, in proving discreteness and faithfulness of maximal representa-
tions we make us of a very general criterion, which was established only recently in
[1]. This allows us to reprove at the same time discreteness and faithfulness of cer-
tain Anosov representations. The corresponding part of these notes is taken almost
literally from [1]. Our second deviation concerns the treatment of the bounded
Euler class, which is one of the major tools in the cohomological study of surface
groups. A famous theorem of Ghys says that it is a complete quasi-conjugacy invari-
ant of representations, and this theorem can be invoked to detect trivial subgroups
of surface groups using bounded cohomology. However, what is actually needed in
this argument is only a very special case of Ghys’ theorem, and we present here an
elementary proof of this special case due to Michelle Bucher and the author. For
the reader interested in the full story we recommend Ghys’ original papers [19, 20].
Our third deviation from the standard literature concerns our treatment of the sec-
ond bounded cohomology. We show that second bounded cohomology classes can
be identified with equivalence classes of certain objects that we call quasi-corners,
and which generalize central extensions and quasimorphisms at the same time. We
find this language very useful from a pedagogical point of view and believe that it
helps to clarify some statements, but it is essentially just a reformulation of very
old ideas (going all the way back to Poincaré).

Finally, some remarks concerning prerequisites. These talks were given in front of
a very specific audience, which was familiar with representations of surface groups
in general and Anosov representations in particular, but not necessarily with group
cohomology. We therefore develop all cohomological tools from scratch (some with-
out proof), while we take various basic facts in hyperbolic geometry for granted.
Probably our greatest omission is that we do not discuss the definition of Anosov
representations at all. However, the reader who wants to close this gap finds more
than sufficient information in the contributions of Spencer Dowdall and Tengren
Zhang in this collection [17, 31]. The odd sections of the body of this article (i.e.
3, 5 and 7) do not refer to surface groups or representations in any essential way
(except for examples), and provide an introduction to bounded cohomology which
might be of independent interest. However, we warn the reader that this introduc-
tion is heavily biased by the applications we have in mind. In particular, we focus
completely on (bounded) cohomology in degree 2.

Throughout these notes we restrict attention to closed oriented surfaces. This is
morally wrong, since the true power of the bounded cohomology machinery only
becomes visible in the case of surfaces with boundary. However, since our main goal
is to be elementary this restriction was, unfortunately, unavoidable. We encourage
the reader to read the uncensored story in [5].
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2. Reminder of group cohomology

In this section we recall some basic facts from group cohomology. We refer to
the textbook literature for proofs. What we actually need is rather little, so any
textbook on group cohomology such as [2] will do.

2.1. What is group cohomology? In textbooks on homological algebra, group
cohomology is often introduced as follows:

Definition 2.1. Let G be a group, R a ring and RG −Mod the category of left
RG-modules. Let

(−)G : RG−Mod→ R−Mod, V 7→ V G := {v ∈ V | g.v = v}
be the functor of G-invariants. Denote by

Hn(G;−) := Dn(−)G : RG−Mod→Mod

its n-th derived functor. Then Hn(G;V ) is called the n-th group cohomology of G
with coefficients in V .

What does this mean?

• Firstly, for every RG-module V there is a certain R-module Hn(G;V ), and
the assignment V 7→ Hn(G;V ) is functorial.
• In order to compute the isomorphism class of Hn(G;V ) one proceeds as

follows: One first chooses an augmented co-resolution

0→ V → I0 → I1 → I2 → . . .

of V by injective RG-modules. One then deletes the augmentation and
applies the functor (−)G to obtain a co-complex

0→ (I0)G → (I1)G → (I2)G → . . .

The cohomology of this cocomplex is then precisely H•(G;V ).

If these words don’t mean anything to you, here is what you should remember: The
invariants H•(G;V ), which depend only on G and V can be computed from many
different resolutions. Therefore the same cohomology class can take very different
meanings (geometric/topological/algebraic) in different contexts. This is the reason
why group cohomology can be used to translate algebraic into geometric problems
and vice versa. Fortunately, we will work with only a few very specific resolutions,
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which we discuss in detail in the sequel. We will be mostly interested in the case
where R ∈ {Z,R} and V = R is the trivial RG-module.

2.2. The topological resolution. The following lemma links the purely algebraic
definition of group cohomology to topology. Various version of this result were
discovered independently by the American school around Eilenberg and McLane
and the Swiss school around Eckmann and Hopf in the 1940s. Historically, this was
the starting point of the modern theory of group cohomology.

Lemma 2.2. (i) For every group G there exists a space BG, unique up to
homotopy, such that π1(BG) = G and the universal covering EG of BG is
contractible.

(ii) Z→ C0
sing(EG)→ C1

sing(EG)→ . . . is an augmented resolution of Z.

(iii) H•(G;Z) ∼= H•(BG;Z).

Example 2.3. (i) BZ = S1, hence

H•(Z;Z) = Z⊕ Z.
(This is our short-hand notation to mean that H0(Z;Z) = Z, H1(Z;Z) = Z
and Hn(Z;Z) = 0 for n > 1.)

(ii) If Γg := 〈a1, b1, . . . , ag, bg |
∏g
j=1[aj , bj ]〉, then BΓg = Σg, the closed surface

of genus g. Thus

H•(Γg;Z) = Z⊕ Z2g ⊕ Z.

Historically, group cohomology was first defined as the cohomology of the classifying
space. The usefulness of the derived functor interpretation only became apparent
later on.

2.3. The (in-)homogeneous bar resolution. The homogeneous bar resolution
is a combinatorial model for cohomology based on the injective resolution with

In := Cn(G;V ) := Map(Gn+1, V )

and homogeneous differentials

d : Cn−1(G;V )→ Cn(G;V ), dc(g0, . . . , gn) =

n∑
j=0

(−1)jc(g0, . . . , ĝj , . . . , gn).

Thus,

H•(G;V ) = H•(C0(G;V )G → C1(G;V )G → C2(G;V )G → C3(G;V )G → . . . )

Note that there are isomorphisms

ιn : Cn(G;V )G := Map(Gn+1, V )G ∼= Map(Gn;V )

given explicitly by

(ιnf)(g1, . . . , gn) = f(e, g1, g1g2, . . . , g1 · · · gn), (ι−1
n h)(g0, . . . , gn) = g0.h(g−1

0 g1, g
−1
1 g2, . . . , g

−1
n−1gn).

Thus, if we define ∂n := ι−1
n ◦ d ◦ ιn, then

H•(G;V ) = H•(Map(G0, V )
∂0

−→ Map(G1, V )
∂1

−→ Map(G2, V )
∂2

−→ Map(G3, V )→ . . . ).

This is called the inhomogeneous bar resolution.

Exercise 2.4. (i) Give explicit formulas for ∂0, ∂1, ∂2.
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(ii) Use the inhomogeneous bar resolution to show that

H0(G;V ) ∼= V G,

and if V = R is the trivial RG-module then

H1(G;R) ∼= Hom(G,R).

2.4. The second cohomology. According to Exercise 2.4, a 2-cocycle for the
inhomogeneous bar resolution of the trivial module R is a function c : G2 → R
satisfying

∂2c(g, h, k) = c(h, k)− c(gh, k) + c(g, hk)− c(g, h) = 0.

A 2-coboundary is a function c : G2 → R for which there exists f : G → R such
that

c(g, h) = ∂1f(g, h) = f(h)− f(gh) + f(h).

What is the algebraic meaning of a cohomology class [c] ∈ H2(G;R)?

Definition 2.5. A central extension of G by R is a short exact sequence of the
form

(2.1) ξ = (0→ R
i−→ G̃

p−→ G→ 1)

with R < C(G̃), the center of G̃. A right section σ of the central extension (2.1)

is a map σ : G → G̃ with pσ = 1G. Two central extensions are equivalent if there
exists an isomorphism making the diagram

G̃1

��
∼=

��

0 // R

??

��

G // 1

G̃2

??

commute.

Proposition 2.6 (Classification of central extensions). (i) Let a central exten-
sion ξ as in (2.1) be given and let σ be a right-section. Then the map

cσ(g, h) := i−1(σ(g)−1σ(gh)σ(h)−1)

is a cocycle.
(ii) If ρ is another right-section, then the difference cσ − cρ is a coboundary.

Thus the cohomology class e(ξ) := [cσ] ∈ H2(G;R) depends only on ξ.
(iii) The map ξ 7→ e(ξ) is an isomorphism between the set Ext(G;R) of isomor-

phism classes of central extensions of G by R and H2(G;R).

In the sequel we refer to e(ξ) as the Euler class of the central extension ξ.
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2.5. Functoriality and the lifting obstruction. An important property of the
cohomology functors H•(H;R) with trivial coefficients is that they are also (con-
travariantly) functorial in the group variable. Explicitly, if ρ : H → G is a homo-
morphism and c ∈ Map(Gn;R) is an inhomogeneous then

ρ∗c(h1, . . . , hn) := c(ρ(h1), . . . , ρ(hn))

defines an inhomogeneous H-cocycle, and we obtain a map

ρ∗ : H•(G;R)→ H•(H;R), [c] 7→ [ρ∗c]

in the opposite(!) direction. This map can also be defined more abstractly; either
way, one can show that it is compatible with the geometric resolution: If H and G
are groups and ρ : H → G is a homomorphism, then there exists a ρ-equivariant
map ϕ : BH → BG (unique up to homotopy) and the diagram

H•(G;R)

∼=
��

ρ∗ // H•(H;R)

∼=
��

H•(BG;R)
ϕ∗
// H•(BH;R)

commutes.

We now specialize again to degree 2: Let e ∈ H2(G;R) and ρ : H → G be a
homomorphism. What is the meaning of ρ∗e? Recall that, by Proposition 2.6 there
exists a central extension ξ (unique up to isomorphism) such that e = e(ξ). Assume
that ξ is given as in (2.1). We say that the homomorphism ρ lifts over the central

extension ξ if there exists a homomorphism ρ̃ : H → G̃ making the diagram

0 // R // G̃ // G // 1

H

ρ

OO

ρ̃

__

commute.

Proposition 2.7 (Lifting obstruction). Let e = e(ξ) ∈ H2(G;R) and ρ : H → G
be a homomorphism. Then ρ∗e = 0 ∈ H2(H;R) if and only if ρ lifts over the
extension ξ. Moreover, if ρ∗cσ = du for some u : H → R , then an explicit lift ρ̃ is
given by

(2.2) ρ̃(h) = σ(ρ(h)) · i(u(h)).

While the abstract obstruction result is standard, the explicit formula for the lift is
not always given in the literature. Since we will heavily use this formula later on,
we provide a proof:

Proof. A simple computation shows that if ρ∗cσ = du and ρ̃ is defined as in (2.2)
then

ρ̃(γ1γ2) = σ(ρ(γ1γ2))i(u(γ1γ2)) = σ(ρ(γ1)ρ(γ2)) · i(u(γ1γ2))

= σ(ρ(γ1))i(eσ(ρ(γ1), ρ(γ2)))σ(ρ(γ2))i(u(γ1γ2))

= σ(ρ(γ1))i(du(γ1, γ2))σ(ρ(γ2))i(−u(γ1γ2))
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= σ(ρ(γ1))i(u(γ2))i(−u(γ1γ2))i(u(γ1))σ(ρ(γ2))i(u(γ1γ2))

= σ(ρ(γ1))i(u(γ1))σ(ρ(γ2))i(u(γ2))

= ρ̃(γ1)ρ̃(γ2),

whence ρ̃ is indeed a homomorphism. This shows in particular that ρ lifts whenever
ρ∗e = 0. We leave the converse implication to the reader. �

Corollary 2.8 (Killing H2 via central extensions). Let G be a group and e ∈
H2(G;R). Then there exists a central extension ξ as in (2.1) such that p∗e = 0 ∈
H2(G̃;R).

Proof. Choose ξ so that e = e(ξ). Then

0 // R // G̃
p // G // 1

G̃

p

OO

1
G̃

^^

,

commutes, whence p∗e = 0. �

2.6. The case of surface groups. We now specialize the above results in the
case where G = Γg is a surface group. From the topological model we know
that H2(Γg;Z) ∼= Z. By Proposition 2.6 there exists thus for every integer n a

central Z-extension Γ̃
(n)
g such that these exhaust all equivalence classes of central

Z-extensions. The extension Γ̃
(0)
g is just the trivial extension Γ× Z. In general we

have presentations

Γ̃
(n)
g = 〈a1, b1, . . . , ag, bg, c |

g∏
j=1

[aj , bj ] = zn, [aj , c] = [bj , c] = e〉,

where the kernel of the map Γ̃
(n)
g → Γg is generated by c. Since H2

b (G,R) is cyclic,
a special role is played by the central extension

pΓg
: Γ̃g → Γg,

where Γ̃g := Γ̃
(1)
g . This central extension is universal in the following sense:

Proposition 2.9 (Universal central extensions of surface groups). Let pG : G̃→ G
be a central Z-extension and ρ : Γg → G an arbitrary homomorphism. Then there

exists a lift ρ̃ : Γ̃g → G̃ making the diagram

Γ̃g

pΓg

��

ρ̃ // G̃

pG

��
Γg

ρ // G

commute.
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Proof. Let α ∈ H2(G;Z) be the class associated with the extension pG and β :=
ρ∗α. Then there exists n ∈ Z such that β is represented by the extension pn :

Γ̃
(n)
g → Γg. Now there is a homorphism Γ̃→ Γ̃

(n)
g given by c 7→ cn, hence we get

Γ̃g

��

$$

ρ̃

��
Γ̃

(n)
g

pΓg

��

// G̃

pn

��
Γg

ρ // G.

�

2.7. Actions on the circle. We provide a first application of the methods de-
veloped so far. Let Γ be a group acting on the circle by orientation-preserving
homomorphisms. When does this action lift to an action on the real line?

To answer this question, consider the group G := Homeo+(S1) of orientation-
preserving homeomorphisms of the circle and its central extension

ξS1 = (0→ Z→ G̃→ G→ 1),

where

G̃ := Homeo+
Z (R) = {f ∈ Homeo+(R) | f(x+ 1) = f(x) + 1}.

The class e(S1) := e(ξS1) is called the Euler class of the circle. Now an orientation-
preserving action of Γ on the circle is the same as a homomorphism ρ : Γ→ G. We
refer to ρ∗(e(S1)) ∈ H2(Γ) as the Euler class of this circle action. Then we obtain
the following special case of Proposition 2.7:

Corollary 2.10. An action of Γ on the circle lifts to an action on the real line if
and only if the Euler class of the circle action vanishes.

3. Bounded cohomology I: Elementary theory

3.1. Definition and models. Bounded group cohomology was introduced inde-
pendently by Traubel (working on groups, unpublished) and Johnson ([27], working
on Banach algebras) and popularized by Gromov in his famous 1982 paper [23]. It
is an important tool in modern group theory ever since. As for classical cohomol-
ogy, we can give a functorial, a topological and a combinatorial definition. The
combinatorial definition is the easiest to state, so we start with this one:

Recall that the homogeneous standard resolution, say with integer coefficients, is
formed by the modules Cn(G;Z) := Map(Gn+1,Z) and homogeneous differentials
d. If we define Cnb (G;Z) := l∞(Gn+1,Z), where l∞(−;Z) denotes bounded Z-valued
functions, then (Cnb (G;Z), d) is a subcomplex of (Cn(G;Z), d) and we define:

Definition 3.1. The cohomologyH•b (G;Z) := H•(Cnb (G;Z), d) is called the bounded
integral group cohomology of G.
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As in the classical case, we also have an inhomogeneous model

H•b (G;Z) ∼= H•(l∞(G0;Z)→ l∞(G1;Z)→ l∞(G2;Z)→ l∞(G3;Z)→ . . . ).

Bounded group cohomology with real coefficients is defined accordingly, replacing
Z by R everywhere. Integral and real bounded group cohomology are related by
the Gersten exact sequence

· · · → Hn
b (G;Z)→ Hn

b (G;R)→ Hn(G;R/Z)→ Hn+1
b (G;Z)→ . . .

We will mostly be working with real coefficients in our applications, but occasion-
ally passing to integral coefficients is necessary.

Let us now turn to other models of bounded cohomology: One can define bounded
singular cohomology of a topological space X by considering only those integral
(or real-valued) cochains, which considered as functions on singular simplices are
bounded. If we denote the group of this cochains by Cnb (X;Z) (or Cnb (X;R)) then

H•b (X;Z) := H•(C•b (X;Z), d), H•b (X;R) := H•(C•b (X;Z), d).

Now as in the classical case one shows that H•b (G;Z) ∼= H•b (BG;Z) and H•b (G;R) ∼=
H•b (BG;R). However, actually much more is true: Bounded cohomology does not
see higher homotopy groups, whence:

Theorem 3.2 (Gromov-Brooks-Ivanov, cf. [23, 26]). Let X be a space which has
the homotopy type of a countable CW-complex. Then

H•b (X;Z) ∼= H•b (π1(X);Z), H•b (X;R) ∼= H•b (π1(X);R).

Finally, there is also a categorical interpretation ofH•b (G;R), which was obtained by
Bühler in his thesis [3]. Namely, for H•b (G;−) is the derived functor of (−)G in the
(semi-abelian) category of Banach-G-modules. We will not go into this abstract
definition any further; it basically means that, like usual cohomology, bounded
cohomology can be computed from many different resolutions. One such resolution,
the so-called boundary resolution of Burger and Monod, will be discussed below.
To the best of our knowledge, there is no categorical approach to integral bounded
group cohomology.

In the remainder of this section we present some standard material concerning
bounded cohomology. Unless otherwise mentioned, this material can be found in
[29, 3, 12].

3.2. The comparison map I: Non-surjectivity for amenable groups. The
inclusion of subcomplexes Cnb (G;R) ↪→ Cn(G;R) induces, on the level of cohomol-
ogy, a comparison map

c• = c•G : H•b (G;R)→ H•b (G;R),

which in general is neither injective nor surjective.1 Let us first explain, why it fails
to be surjective in general. Digressing a little bit, let us first point out that the usual
group cohomology H•(F ;R) vanishes for any finite group F . Indeed, by averaging

1As pointed out to me by M. Bucher, this half-sentence seems to be contained in every single
paper on bounded cohomology.
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over the finite group we obtain equivariant operators A : Cn(G;R)→ Cn−1(G;R),
which satisfy dA = Id. These then provide a contracting homotopy for the complex

0 // C0(G;R)G
d // C1(G;R)G

A

ii
d // C2(G;R)G

A

ii
d // C3(G;R)G

A

ii
d // . . .

A

hh
,

showing thatHn(F ;R) = {0} for n > 0. This argument works only for finite groups,
since these are the only ones admitting an equivariant averaging operator. However,
in bounded cohomology we can generalize the above argument quite a bit. Recall
that a group G is called amenable if l∞(G) admits a G-invariant mean, i.e. a linear
fuctional m ∈ l∞(G)′ such that m(1G) = 1, ‖m‖ = 1 and f ≥ 0⇒ m(f) ≥ 0. Using
such a mean it is easy to construct averaging operators A : Cnb (G;R)→ Cn−1

b (G;R)
which provide a contracting homotopy

0 // C0
b (G;R)G

d // C1
b (G;R)G

A

ii
d // C2

b (G;R)G

A

ii
d // C3

b (G;R)G

A

ii
d // . . .

A

hh
.

We thus deduce:

Proposition 3.3. If G is amenable, then Hn
b (G;R) = {0} for all n > 0.

We will not have the time to discuss amenable groups in detail; let us just remark
that

• Z and more generally, abelian groups, are amenable by the Markov-Kakutani
fixed point theorem;
• finite groups are (obviously) amenable;
• extensions and directed unions of amenable groups are amenable;
• combining these three examples, directed union of finite-by-solvable groups

are amenable; these are called elementary amenable;
• finitely generated groups of subexponential growth are amenable.

It was a long standing open question, whether every amenable group is elemen-
tary amenable. The question was answered in the negative by constructing non-
elementary amenable groups of subexponential (in fact, intermediate) growth. The
first such examples were constructed by Grigorchuk in 1980.

After this short digression we now return to our comparison map. From the
amenability of Zn we deduce that the comparison map is not surjective in any
degree > 0:

Corollary 3.4. For n > 0 the comparison map

cnZ : {0} ∼= Hn
b (Zn;R)→ Hn(Zn;R) ∼= R

is not surjective.

3.3. The comparison map II: Non-injectivity and quasimorphisms. More
surprising than the non-surjectivity of the comparison map is probably the non-
injectivity. To understand what is going on here, we have to unravel definitions.
We are going to work in the inhomogeneous bar resolution, and we will focus on
low degrees. In degrees 0 and 1 there is nothing to gain: As in Exercise 2.4 one
shows that for any group G one has H0

b (G;R) ∼= R and H1
b (G;R) = Homb(G;R),
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the space of bounded homomorphisms into R. However, R does not have bounded
subgroups, whence:

Lemma 3.5. For any group G we have H1
b (G;R) = {0}.

Thus in order to find comparison maps with non-trivial kernel we have to go at
least to degree 2. Here the relevant part of the inhomogeneous bar resolution is
given by

Map(G;R)
∂1
// Map(G2;R)

∂2
// Map(G3;R)

l∞(G;R)

OO

∂1
// l∞(G2;R)

OO

∂2
// l∞(G3;R)

OO
,

where ∂1f(g, h) = f(h)− f(gh) + f(h). Now assume that

α = [c] ∈ EH2
b (G;R) := ker(c2G).

Since c2G(α) = 0 there exists f ∈ Map(G;R) such that ∂1f = c. Note that

sup
g,h∈G

|f(gh)− f(g)− f(h)| = sup
g,h∈G

|c(g, h)| <∞.

Thus f is almost a homomorphism. We introduce a name for such functions:

Definition 3.6. A function f : G→ R is called a quasimorphism of defect D(f) if

D(f) := sup
g,h∈G

|f(gh)− f(g)− f(h)| <∞.

Two quasimorphisms f1, f2 are called equivalent if ‖f1 − f2‖∞ < ∞. We denote

by Q̃(G) the space of quasimorphisms on G and by Q(G) the space of equivalence
classes of quasimorphisms.

By the previous considerations we have a surjective linear map

q : Q̃(G)→ EH2
b (G;R), f 7→ [df ].

Exercise 3.7. Show that the kernel of q is given by l∞(G)⊕Hom(G;R).

As an immediate consequence of the exercise we have:

Proposition 3.8. There map q induces an isomorphism

Q(G)

Hom(G;R)
=

Q̃(G)

l∞(G)⊕Hom(G;R)
∼= EH2

b (G;R).

Since it is slightly inconvenient to work with equivalence classes of quasimorphisms
all the time, it is useful to find canonical representatives.

Proposition 3.9. Let f be a quasimorphism.

(i) For every g ∈ G the limit

f̃(g) := lim
n→∞

f(gn)

n
exists.

(ii) f̃ is a quasimorphism, which is equivalent to f .

(iii) f̃ is homogeneous, i.e. f(gn) = n · f(g) for all n ≥ 0.
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(iv) f̃ is the unique homogeneous quasimorphism equivalent to f .

Exercise 3.10. Prove Proposition 3.9.

In view of the proposition, we can identify Q(G) with the space of homogeneous
quasimorphisms on G. Thus:

Corollary 3.11. Let G be a group. Then c2G is injective if and only if every
homogeneous quasimorphism on G is a homomorphism.

Combining this with Proposition 3.3 we deduce:

Corollary 3.12. If G is an amenable group, then every homogeneous quasimor-
phism on G is a homomorphism.

The following special case is noteworthy:

Corollary 3.13. Let f : G → R be a homogeneous quasimorphism. Let a, b ∈ G
and assume that a and b commute. Then f(ab) = f(a) + f(b).

Proof. Let H := 〈a, b〉. Then H is abelian, hence amenable, and thus f |H is a
homomorphism. �

The following lemma collects further properties of homogeneous quasimorphisms:

Lemma 3.14. Let f : G→ R be a homogeneous quasimorphism. Then the follow-
ing hold:

(i) f(g−1) = −f(g).
(ii) f(gn) = n · f(g) for all n ∈ Z.
(iii) f is conjugation-invariant.
(iv) If N CG is normal, p : G→ G/N is the canonical projection and f |N = 0,

then there exists a homogeneous quasimorphism F : N → R with f = F ◦p.
(v) f is a homomorphism if and only if f |[G,G] = 0.

Proof. (i) 0 = f(e) = f(gng−n) = f(gn) +f((g−1)n) +o(1) = n ·f(g) +n ·f(g−1) +
o(1). Now divide by n and let n→∞. (ii) immediate from (i). (iii) Compute

n · f(hgh−1) = f(hgnh−1) = f(h) + f(gn) + f(h−1) + o(1) = n · f(g) + o(1),

divide by n and let n → ∞. (iv) For every coset gN pick a representative g and
set F0(gN) := f(g). It is easy to check that F0 is a quasimorphism. Let F be the
homogenization of F0; then one checks that p∗F − f is a bounded homogeneous
function, hence equal to 0. (v) If f is a homomorphism, then clearly f |[G,G] = 0.
Conversely, assume that f |[G,G] = 0 and denote by Gab := G/[G,G] the abelian-
ization. By (iv), we then find a homogeneous quasimorphism F : Gab → R with
f = F ◦ p, where p : G→ Gab is the canonical projection. Now by Corollary 3.12,
F is a homomorphism, hence f is a homomorphism as well. �

We now return to the problem of (non-) injectivity of the comparison map.

Example 3.15 (Brooks). Let G = F2 be the free group with basis {a, b}. Identify
elements of G with reduced words over {a, b}. Given such a reduced word w, denote
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by #ab(w) the number of occurrences of the sequence ab in w, and define #(ab)−1(w)
similarly. Then

ϕab : F2 → Z, w 7→ #ab(w)−#(ab)−1(w)

is a quasimorphism of defect 1.

Corollary 3.16. c2F2
is not injective.

Proof. The homogenization f := ϕ̃ab vanishes on a and b and satisfies f(ab) = 1. If
c2F2

was injective, then f was a homomorphism by Corollary 3.11. However, there
is no homomorphism f of F2 with f(a) = f(b) = 0 and f(ab) = 1. �

With (quite) a bit more work one can push this idea to show that, in fact [22]

dimH2
b (F2;R) = dimEH2

b (F2;R) =∞.
The obvious idea is to construct counting quasimorphisms ϕw for arbitrary w ∈ F2.
What is not obvious, is that sufficiently many of these quasimorphisms are linearly
independent. This was established by Grigorchuk in 1994, after several wrong
proofs had appeared.

3.4. Aside: A geometric disaster. The most powerful tool in cohomology of
topological spaces is arguably the excision theorem. It says that if X = U ∪ V
is a space build from subspaces U and V , then H•(X;R) can be computed from
the cohomologies of U, V and U ∩ V . For example, if X is the figure eight, then
we can decompose it into two circles U and V , intersecting in a point. Thus the
cohomology of the figure eight can be computed from the cohomology of the circle
and the cohomology of a point. This is true for all generalized cohomology theories
in the sense of Eilenberg-Steenrod, even for more exotic ones like K-theory. Now,
for bounded cohomology this excision theorem fails in the most horrible way. For
the circle S1 we compute

Hn
b (S1;R) = Hn

b (Z;R) = {0} (n ≥ 1).

However, for the figure eight we have

Hn
b (8;R) = Hn

b (F2;R),

which is not only non-zero, but in fact infinite-dimensional in degree 2. This is
the reason why bounded cohomology of topological spaces has evaded almost any
computational attempts beyond degree 2 .

3.5. An interpretation of H2
b . We have seen that H2(G;R) classifies central

R-extensions of G. What does H2
b (G;R) classify? Since H2 classifies central ex-

tensions and EH2
b classifies quasimorphisms, it is reasonable to expect that H2

b

classifies a combination of the two. This is indeed the case, although it has not
been spelled out explicitly in the literature. We suggest here the following new
terminology;

Definition 3.17. A quasi-corner over G is a diagram

G̃

p

��

f // R

G
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such that p is onto, ker(p) is central in G̃ and f is a homogeneous quasimorphism.

We write C(f, p) to denote the above quasi-corner. Note that every quasimorphism
f on G defines a quasi-corner C(f, idG). This allows us to consider quasimorphism
as special quasi-corners. We now introduce a notion of equivalence of quasi-corners,
which generalizes the notion of being cohomologous for quasimorphisms. For this

let C(f1, p1) and C(f2, p2) be quasi-corners as above. Let G̃ be the pushout

G̃

p

��

π1

��

π2

��
G̃1

p1
��

G̃2

p2
��

G

where p := p1 ◦ π1 = p2 ◦ π2. Then p is surjective, and since the kernels of p1 and

p2 are abelian, its kernel is amenable. In other words, p : G̃→ G is an (in general
non-central) amenable extension.

Definition 3.18. The quasi-corners C(f1, p1) and C(f2, p2) are equivalent if

(π∗1f1 − π∗2f2)|[G̃,G̃] ≡ 0.

We denote by QC(G) the set of equivalence classes of quasi-corners over G.

Note that in view of Proposition 3.14 the above condition is equivalent to π∗1f1−π∗2f2

being a homomorphism. We now relate equivalence classes of quasi-corners over G
to classes in H2

b (G;R); for this the key observation as as follows:

Proposition 3.19 (Invariance under amenable extensions). For any amenable ex-

tension p : G̃ → G the map p∗ : H2
b (G;R) → H2

b (G̃;R) is an isomorphism. In
particular, this is the case for any central extension.

Proof. Let us denote by C the kernel of p so that we have a short exact sequence

{e} → C
i−→ G̃

p−→ G→ {e},

which we can exploit cohomologically. Indeed, a standard tool in general homo-
logical algebra is the five-term exact sequence of a derived functor. In the case
of bounded cohomology this five-term exact sequence for the central extension ξ
reads2

0→ H2
b (G;R)

p∗−→ H2
b (G̃;R)→ H2

b (C;R)→ H3
b (G;R)→ H3

b (G̃;R).

Now C is assumed amenable, hence the proposition follows from Proposition 3.3.
�

2If you know classical group cohomology, you might know a similar sequence starting from

H1; in bounded cohomology the degree is shifted by one, since H1
b is always trivial. The proof

(essentially a spectral sequence argument) is the same.
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Given a quasi-corner C = C(f, p) we define

αb(C) := (p∗)−1(df) ∈ H2
b (G;R).

We then say that C realizes the class αb(C). We observe:

Proposition 3.20. If two quasi-corners are equivalent, then they realize the same
bounded cohomology class.

Proof. This is immediate from Propositions 3.19, 3.8 and 3.9. �

We thus obtain a well-defined map

α : QC(G)→ H2
b (G;R), [C] 7→ αb(C).

Proposition 3.21. The map α : QC(G)→ H2
b (G;R) is a bijection.

Proof. In view of Proposition 3.14.(v), injectivity follows again from Propositions
3.19, 3.8 and 3.9. Indeed, two quasi-corners C(f1, p1) and C(f2, p2) represent the
same class in bounded cohomology if and only if [dπ∗1f1] = [dπ∗2f2], which by
Proposition 3.14.(v) precisely means that π∗1f1 − π∗2f2 is a homomorphism. By
definition this means that the two quasi-corners are equivalent. It remains to show
that every bounded cohomology class αb ∈ H2

b (G;R) can be realized by a quasi-
corner. For this let α := c2G(αb) ∈ H2(G;R). By Corollary 2.8 there exists a central
extension ξ of G, along which the pullback of α vanishes. (In general, ξ will be an
R-extension, but in many favorable situations e.g. if α is rational we can actually
pick a Z-extension.) We now fix one such central extension

ξ = (0→ C → G̃
p−→ G→ 1),

where C is some subgroup of R and p∗α = 0. By naturality of the comparison map
we now have

c2
G̃

(p∗(αb)) = p∗c2
G̃

(αb) = p∗α = 0,

whence

p∗αb ∈ EH2
cb(G;R).

By Proposition 3.8 and Proposition 3.9 this implies that there exists a homogeneous

quasimorphism f : G̃→ R such that

df = p∗αb,

whence αb = αb(C(f, p)). �

The reason why the quasi-corner model for H2
b (G;R) is useful is the following

naturality property, which we will use many times:

Exercise 3.22. Show that the obvious pullback of quasi-corners (descends to equiv-
alence classes and) induces pullback on the level of bounded cohomology.
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3.6. The case of surface groups. In the case of surface groups the situation is

considerably simplified by the existence of a universal central extension pΓg
: Γ̃g →

Γg as defined in Section 2.6. Indeed, assume that we are given two quasi-corners

G̃

pG

��

fG // R H̃

pH

��

fH // R

G H

,

with ker(pG) ∼= ker(pH) ∼= Z, representing classes αGb and αHb respectively. Assume
moreover that we are given homomorphisms ρG : Γ → G and ρH : Γ → H. By
Proposition 2.9 we then find lifts making the diagram

(3.1) R G̃

pG

��

fGoo Γ̃g
ρ̃Goo

pΓg

��

ρ̃H // H̃

pH

��

fH // R

G ΓgρG
oo

ρH
// H

commute. Then we have the following special case of Proposition 3.21:

Corollary 3.23. In the situation of (3.1) the following are equivalent:

(i) ρ∗Gα
G
b = ρ∗Hα

H
b ∈ H2

b (Γ;R).

(ii) The function fG ◦ ρ̃G − fH ◦ ρ̃H : Γ̃g → R is a homomorphism.
(iii) (fG ◦ ρ̃G − fH ◦ ρ̃H)|

[Γ̃g,Γ̃g]
≡ 0.

4. Bounded Euler class and applications to surface group
representations

Having developed the most elementary parts of the theory of bounded cohomology
we now turn to a first application. We introduce the bounded Euler class and prove
a special case of a famous theorem of Ghys [19, 20].

4.1. The bounded Euler class and the translation number. At this point
we have assembled enough information about bounded cohomology to give a first
application. For this we return to the situation of Section 2.7 and consider the

central extension p : G̃ → G given by G := Homeo+(S1), G̃ := Homeo+
Z (R).

Recall that this central extension corresponds to a class e(S1) ∈ H2(G;Z), which
is represented by the cocycle

cσ(g, h) = (σ(g)σ(gh)−1σ(g))(0).

A specific section σ : G → G̃ can be given as follows: Let σ(f) ∈ G̃ be the unique
lift of f with σ(f)(0) ∈ [0, 1). Then, obviously, cσ is bounded, hence defines a class

eb(S
1) := [cσ(g, h)] ∈ H2

b (G;Z).

Note that by definition, eb(S
1) is mapped to e(S1) under the comparison map, hence

it is called a bounded Euler class. We also denote by eRb (S1) the corresponding class
in H2

b (G;R). We will usually shorten the notation to e, eb, e
R, eRb , dropping the S1

from the notation.
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Now the real bounded Euler class eRb (S1) can be represented by a quasi-corner of
the form

Homeo+
Z (R)

p

��

T // R

Homeo+(S1),

and since Homeo+
Z (R) is perfect, the homogeneous quasimorphism T : Homeo+

Z (R)→
R is actually uniquely determined.

Proposition 4.1. (i) For every x ∈ R the map Tx : Homeo+
Z (R) → R given

by
Tx(f) = f(x)− x

is a quasimorphism.
(ii) The quasimorphisms Tx are at mutually bounded distance, hence have a

common homogenization T : Homeo+
Z (R)→ R given by

Tf = lim
n→∞

fn(x)− x
n

,

which is independent of x ∈ R.
(iii) If p : Homeo+

Z (R) → Homeo+(S1) is the canonical projection, then eRb (S1)
is represented by the quasi-corner C(−T, p).

The quasimorphism T was discovered by Poincaré in 1889. It is called the trans-
lation number quasimorphism and plays a major role in the theory of dynamical
systems.

Proof of Proposition 4.1. (i), (ii) The key observation is that for f, g ∈ G̃ and x ∈ R
we have

|Tx(f)− Ty(f)| = |(f(x)− x)− (f(y)− y)| ≤ 1.

Indeed, (ii) is immediate from this observation, and (i) also follows since

Tx(f ◦ g)− Tx(f)− Tx(g) = Tg(x)(f)− Tx(f).

It remains to show (iii). We will actually show the following more precise statement:

If σ : G→ G̃ is the unique section with σ(f)(0) ∈ [0, 1) and eσ is the corresponding
cocycle representative of the Euler class of the extension p, then p∗eσ = dA, where
A(f) = bf(0)c. Since |A(f)− T0(f)| < 1, this implies the statement. The key step

in the proof is to show that for f1, f2 ∈ G̃ we have

b(f1f2)(0)c = −b(f1f2)−1(0)c.(4.1)

Indeed, every f ∈ G̃ satisfies

bf−1bf(0)cc ≤ bf−1(f(0))c = 0, bf−1bf(0)cc > bf−1(f(0)− 1)c = −1,

leading to bf−1bf(0)cc = 0. This now yields

0 = bf−1(bf(0)c)c = bf−1(0 + bf(0)c)c = bf−1(0) + bf(0)cc = bf−1(0)c+ bf(0)c,
which for f := f1f2 yields (4.1). Thus if we denote f := f −A(f), then

(p∗eσ)(f1, f2) = i−1(σ(p(f1)p(f2))−1σ(p(f1))σ(p(f2)))

= ((f1f2)−1f̄1f̄2)(0)
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= ((f1f2)−1f̄1(f2 − bf2(0)c)(0)

= ((f1f2)−1(f1f2 − bf2(0)c − bf1(0)c)(0)

= 0− bf2(0)c − bf1(0)c − b(f1f2)−1(0)c
(4.1)
= b(f1f2)(0)c − bf2(0)c − bf1(0)c)
= −dA(f1, f2).

�

4.2. Vanishing of bounded Euler classes. Let G be a group and ρ : G →
Homeo+(S1) be a circle action. We have seen that ρ∗e = 0 if and only if the action
lifts to the real line. What is the meaning of ρ∗eb = 0? This condition of course
implies that the action lifts, however, since the comparison map of G may have
a huge kernel (as we have seen in the case of free groups), there is much more
information to be gained from eb.

Proposition 4.2. Let ρ : G→ Homeo+(S1) be a circle action with ρ∗eb = 0. Then
ρ(G) fixes a point on S1.

This is a baby version of a famous theorem of Ghys [19, 20], which says that ρ∗eb
is a complete quasi-conjugacy invariant of circle actions. The short and elementary
proof given below is due to M. Bucher and the author. The general theorem is
based on a similar idea, but much more technical.

Proof. Let u : G→ Z be a bounded function with ρ∗eσ = du, where σ is the special
section defined above. By Proposition 2.7 we have a homomorphism

ρ̃ : G→ Homeo+
Z (R), ρ̃(g) = σ(ρ(g)) · i(u(g)).

In particular,

ρ̃(g)(0) = σ(ρ(g))(0) + u(g).

Now, by choice of our section, σ(ρ(g))(0) ∈ [0, 1), hence ρ̃(g)(0) is bounded. Set

F+(ρ̃) := sup
g∈G

ρ̃(g)(0);

then F+(ρ̃) is a fixed point for ρ̃(G), hence its image in S1 is a fixed point for
ρ(G). �

We will also need a version of the proposition for the real bounded Euler class:

Corollary 4.3. Let ρ : G → Homeo+(S1) be a circle action with ρ∗eb = 0. Then
ρ([G,G]) fixes a point on S1.

Proof. Consider the following segment of the Gersten sequence for G:

H1(G,R/Z) = Hom(G,R/Z)
δ // H2

b (G,Z) // H2
b (G,R) .

Then our assumption ρ∗(eRb ) = 0 implies that there exists a homomorphism χ : G→
R/Z such that ρ∗(eb) = δ(χ). We thus have to understand the connecting homo-
morphism δ. Observe that there is a canonical embedding ι : R/Z→ Homeo+(S1)
via the action by rotations, so we obtain a homomorphism χ̃ := ι ◦ χ : G →
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Homeo+(S1). Then a really unpleasant diagram chase shows that δ(χ) = χ̃∗eb. We
thus find

ρ∗(eb) = χ∗(eb).

Now since R/Z is abelian, the homorphism χ (and hence χ̃) vanishes on [G,G]. It
follows that ρ|∗[G,G]eb = 0, whence [G,G] has a fixed point. �

4.3. Surface groups, hyperbolizations and bounded fundamental class.
Let Σg be a closed oriented surface of genus g and Γg := π1(Σg). A representation
h : Γg → PU(1, 1) will be called a hyperbolization if it is the holonomy representa-
tion of an oriented hyperbolic structure on Σg, and an anti-hyperbolization if it is
the holonomy representation of a negatively-oriented hyperbolic structure on Σg.
Here we think of PU(1, 1) as the identity component of the automorphism group of
the Poincaré disc D. By classical results of Dehn, Nielsen and Baer, every discrete
and faithful representation is either a hyperbolization or an anti-hyperbolization.
Moreover, the unique outer automorphism of PU(1, 1) swaps hyperbolizations and
anti-hyperbolization. In studying discrete, faithful representations into PU(1, 1) we
can thus focus on hyperbolizations.

The action of PU(1, 1) on D by fractional linear transformations extends continu-
ously to the boundary S1 = ∂D. This boundary action gives rise to an embedding
ι : PU(1, 1) → Homeo+(S1). Therefore, every hyperbolization h : Γg → PU(1, 1)
gives rise to an embedding

ȟ := ι ◦ h : Γg → Homeo+(S1),

which for lack of a better name we call a hyperbolic boundary action. The following
is a weak version of hyperbolic stability:

Lemma 4.4. Any two hyperbolic boundary actions ȟ1, ȟ2 : Γg → Homeo+(S1) are
conjugate.

The strong version of hyperbolic stability says that they are actually conjugate
by a Hölder continuous homomorphism, but we will not need this fact here. We
recall that the automorphism group Aut(G) of a group G acts on the (bounded)
cohomology ring by functoriality. It is a classical fact in group cohomology, that
the action of the inner automorphism group on cohomology is trivial, and this fact
(and its proof) carry over to bounded cohomology. We deduce:

Corollary 4.5. Let α ∈ H•(Homeo+(S1),R) or α ∈ H•b (Homeo+(S1),R) and let

ȟ : Γg → Homeo+(S1) be a hyperbolic boundary action. Then the class α|Γg
:= ȟ∗α

is independent of the choice of hyperbolic boundary action.

This allows us to define:

Definition 4.6. The fundamental class, respectively bounded fundamental class

of Σg are defined as κΣg := eR(S1)|Γg ∈ H2(Γg), respectively κ
Σg

b := eRb (S1)|Γg ∈
H2
b (Γg).

The name fundamental class will be justified below, when we relate it to the hy-
perbolic volume form. For the moment, it is just a name. The term bounded
fundamental class was introduced in [8], where the importance of this class was
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first fully realized. Namely, it is indeed fundamental in the sense that it detects
certain types of small subgroups:

Definition 4.7. A subgroup H < PU(1, 1) is called elementary if it has a finite
orbit in D.

Theorem 4.8 (Detecting elementary subgroups with bounded cohomology). Let

Λ < Γg be a subgroup of a surface group. Assume that (κ
Σg

b )|Λ = 0 ∈ H2
b (Λ;Z).

Then the image of Λ under any hyperbolization is elementary. If Λ is normal in
Γg, then Λ is trivial.

Proof. Let us fix a hyperbolization h : Γ → PU(1, 1) and an associated boundary

action h̃ : Γ → Homeo+(S1). Denote by F the set of h̃([Λ,Λ])-fixed points in

S1. Since (h̃|Λ)∗eRb = 0 we deduce from Corollary 4.3 that F is non-empty. By

construction, F is h̃(Λ)-invariant, hence if F is finite then h(Λ) is elementary.
We may thus assume that F is infinite. However, the only subgroup of PU(1, 1)
with infinitely many fixed points on the circle is the trivial group. It follows that

h̃([Λ,Λ]) = {e}, whence h factors through the abelianization of Λ. Now every
abelian subgroup of PU(1, 1) is elementary. This proves the first statement, and
the second statement follows from the fact that the hyperbolization of a surface
group has no normal elementary subgroups. �

Before we turn to applications we need one more technical tool:

Lemma 4.9. Let ȟ : Γg → Homeo+(S1) be a boundary hyperbolization and ˜̌h :

Γ̃g → Homeo+
Z (R) be a lift. Then

T (˜̌h(Γ̃g)) ⊂ Z.

Proof. Every g ∈ ȟ(Γg) is hyperbolic, hence has a fixed point on S1. Thus, in

every fiber of ˜̌h(Γ̃g) over ȟ(Γg) there is an element g∗ which fixes a point in R.
For this elements we have T (g∗) = 0 by the explicit formula for T . Now if h is a
different element in the same fiber, then h = g∗τ , where τ is an integer translation.
Now translations are central, hence T (h) = T (g∗) + T (τ) = T (τ) ∈ Z by Corollary
3.13. �

4.4. A cohomological criterion for injectivity. We now present a first appli-
cation of bounded cohomology to representation theory of surface groups, based on
Theorem 4.8. Concerning surface groups, we use the notation introduced in the
previous section

Theorem 4.10 (Injectivity criterion). Let G be a group and αb ∈ H2
b (G;R). As-

sume that αb admits a rational representative. If ρ : Γg → G is a representation
with

ρ∗αb = λ · κΣg

b

for some λ 6= 0, then ρ is injective.

Proof. We represent αb by a quasi-corner (fG, pG). Clearing denominators, we may
assume without loss of generality that the class αb actually has an integral represen-
tative. Then we can choose pG so that ker(pG) ∼= Z. We also fix a hyperbolization
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h and a corresponding boundary action ȟ. Then both ρ and ȟ lift, giving rise to
the diagram

(4.2) R G̃

pG

��

fGoo Γ̃g
ρ̃oo

pΓg

��

˜̌h // Homeo+
Z (R)

p

��

T // R

G Γgρ
oo

ȟ

// Homeo+(S1).

In view of Corollary 3.23 our assumption thus amount to the existence of a homo-

morphism ψ : Γ̃g → R such that

(4.3) fG ◦ ρ̃ = −λ · (T ◦ ˜̌h) + ψ.

Now consider the group Λ := ker(ρ) and let Λ̃ := p−1
Γg

(Λ). We have

pG(ρ̃(Λ̃)) = ρ(pΓg
(Λ̃)) = ρ(Λ) = {0} ⇒ ρ̃(Λ̃) ⊂ Z.

In particular, ρ̃(Λ) is abelian, and thus (fG ◦ ρ̃)|Λ is a homomorphism. It then

follows from (4.3) that T ◦ ˜̌h|Λ̃ is a homomorphism. This implies that

κ
Σg

b |Λ = ȟ∗eRb (S1) = p−1
Γg

[d(T ◦ ˜̌h|Λ̃)] = 0.

We thus deduce from Theorem 4.8 that Λ = {e}, whence ρ is injective. �

4.5. A cohomological criterion for discreteness. A variation of the same ideas
as in the proof of Theorem 4.10 can also be used to detect whether a representation
ρ : Γg → G of a surface group into Lie group G has discrete image.3

In order to discuss discreteness of a representation, we clearly need to take the
topology of G into account. The right way to do this is to develop a topological
version of bounded cohomology; we will discuss this approach in some details below.
However, for the present purpose we will choose an ad hoc approach which serves
it purpose. Given a topological group G, let us call a quasi-corner

G̃

p

��

f // R

G

over G a topological quasi-corner is G̃ is a topological group, p is a covering map and
f is a continuous4 homogeneous quasimorphism. Let us call a class α ∈ H2

b (G;R)
continuous if it can be represented by a topological quasi-corner. Then we have:

Theorem 4.11 (Discreteness criterion). Let G be a Lie group and αb ∈ H2
b (G;R)

be continuous. Assume that αb admits a rational representative. If ρ : Γg → G is a
representation with

ρ∗αb = λ · κΣg

b

3Since the proof of the main theorem is rather technical and its ideas and techniques are not
used in the sequel, this section can be skipped without loss of continuity. However, we will use
the results later on.

4If G is assumed locally compact second countable then every Borel homogeneous quasimor-
phism is continuous, so the assumption can be weakened
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for some λ ∈ Q×, then (it is injective and) ρ(Γg) is discrete.

Proof. Again we may after clearing denominators assume that αb is integral and
represented by a continuous quasi-corner C(fG, pG) with ker(p) ∼= Z. We may also
assume that fG(ker(pG)) = 1

D ·Z, where D is the denominator we cleared. As in the
proof of Theorem 4.10 we then construct the diagram (4.2) and obtain the formula
(4.3). Now define

L := ρ([Γg,Γg]), L̃ := p−1
G (L).

Since pG is a covering we have

L̃ := p−1
G (ρ[Γg,Γg]) = p−1

G (ρ([Γg,Γg])) = ρ̃([Γ̃g, Γ̃g]) · ker(pG).

We claim that fG(L̃) ⊂ R is discrete. Since fG it is continuous, it suffices to show

that in fact fG(ρ̃([Γ̃g, Γ̃g]) · ker(pG)) is discrete. Now, since ρ̃([Γ̃g, Γ̃g] and ker(pG)
commute, it follows from Corollary 3.13 that

fG(ρ̃([Γ̃g, Γ̃g]) · ker(pG)) = fG(ρ̃([Γ̃g, Γ̃g])) + fG(ker(pG)).

Concerning the first summand, the identity (4.3) in combination with Lemma 4.9
yields

fG(ρ̃([Γ̃g, Γ̃g])) = −λ · (T ◦ ˜̌h)([Γ̃g, Γ̃g]) ⊂ λ · Z,
since the homomorphism ψ vanishes on commutators. Since the second summand
is contained by 1

DZ by assumption and since λ was assumed rational, we deduce

that fG(L̃) ⊂ R is indeed discrete.

Let now L̃o denote the identity component of L̃. Since L̃o is connected and fG(L̃)

is discrete we have fG(L̃o) ≡ 0. Combining this with the observation that pG is an

open map and hence pG(L̃o) = Lo we deduce that

0 = [dfG|L̃o ] = p∗Gαb|L̃o = (pG|L̃o)∗(αb|Lo),

hence αb|Lo = 0.

Now consider ∆ := ρ−1(ρ[Γg,Γg] ∩ Lo). We have

(ρ|∆)∗(αb) = (ρ|∆)∗(αb|Lo) = 0,

hence (λ · κΣg

b )|∆ = 0 by assumption. Since λ 6= 0 we deduce that κ
Σg

b |∆ = 0 and
thus ∆ = 0 by Theorem 4.8. Consequently, ρ[Γg,Γg] ∩ Lo = {e}.
Up to now, everything works for arbitrary topological groups G. Now we use that
G is a Lie group. Namely, the closed subgroup L < G is a Lie group, whence Lo is
open in L. It follows that ρ([Γg,Γg])∩Lo is dense in Lo, hence Lo = {e}. It follows
that L, and consequently ρ([Γg,Γg]) is discrete.

Now ρ(Γ) normalizes ρ([Γg,Γg]), hence ρ(Γ) normalizes ρ([Γg,Γg]) = ρ([Γg,Γg]).

Consequently, ρ([Γg,Γg]) centralizes the identity component ρ(Γg)
o
. Now ρ(Γg) is

dense in ρ(Γg) and ρ(Γg)
o

is open. Thus, if we assume ρ(Γg)
o
6= {e}, then we

can find γ ∈ Γg with ρ(γ) ∈ ρ(Γg)
o
\ {e}. We then deduce that ρ(γ) centralizes

ρ([Γg,Γg]).

Now apply Theorem 4.10 and deduce that ρ is injectivity. It follows that γ central-
izes [Γg,Γg]. However, the centralizer of [Γg,Γg] in Γg is trivial. This contradiction

show that ρ(Γg)
o

= {e}, whence ρ(Γg) is discrete. �
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In the proof we clearly use that λ ∈ Q× and that G is a Lie group. It is unclear to
us, whether these assumptions are necessary. Rationality of λ is used in an essential
way, whereas the Lie group property of G seems less essential (and is unfortunately
very restrictive in terms of applications). In any case, at least for representations
of surface groups into Lie groups we have found a cohomologival criterion which
guarantees that the representation in question is discrete and faithful.

On first sight our criterion might not look very useful, since it basically replaces a
mysterious condition by an even more mysterious one. The point we will have to
make below is that in many interesting geometric situations one can actually check
the cohomological condition. This will in particular be the case for maximal and
Shilov-Anosov representations. Before we can make the link, however, we need to
study some more bounded cohomology.

5. Bounded cohomology II: Bounded Kähler classes and boundary
resolutions

5.1. Continuous bounded cohomology of Lie groups. There is a version of
bounded cohomology for topological groups, due to Burger and Monod [9, 10, 11,
29]. Given a topological group G one can replace in the definition of bounded co-
homology the space l∞(Gn+1;R) of bounded functions by the space of continuous
bounded functions Cb(G

n+1;R). The resulting cohomology is called the continuous
bounded cohomology of G and denoted H•cb(G;R). As for bounded cohomology one
shows H0

cb(G;R) ∼= R and H1
cb(G;R) = {0}. Thus the first interesting continuous

bounded cohomology is the second one.

What is the second continuous bounded cohomology of a Lie group? We first recall
that every Lie group G is of a semidirect product G = RuG o Gss, where RuG is
solvable and Gss is semisimple with trivial center, hence decomposes as a product
of simple factors. Now Gss decomposes further as Gss = Gcss ×Gncss , where Gcss is
compact and all simple factors of Gncss are non-compact.

Proposition 5.1. H2
cb(G;R) = H2

cb(G
nc
ss ).

Proof. The 5-term sequence which we used in the proof of Proposition 3.19 exists
also in continuous bounded cohomology. Thus, taking the quotient of a group by
an amenable subgroup does not change the second bounded cohomology. Now RuG
is solvable and Gcss is compact, hence both are amenable. �

The result holds actually in arbitrary degrees and can be proved directly by using
averaging operators constructing the means of RuG and Gcss. We also mention the
following result of Monod, which is special to degree 2, and can also be deduced
from the five-term sequence:

Lemma 5.2. H2
cb(G1 ×G2;R) ∼= H2

cb(G1;R)⊕H2
cb(G2;R).

Combining this with the proposition we see that in our study of H2
cb(G;R) we can

restrict attention to non-compact simple Lie groups. As in the case of bounded
cohomology we have a comparison map H2

cb(G;R) → H2
c (G;R), where the right

hand side denotes cohomology with continuous cochains. Now we have:



COHOMOLOGICAL METHODS 25

Proposition 5.3. For every semisimple non-compact Lie group G the degree 2
comparison map H2

cb(G;R)→ H2
c (G;R) is injective.

Proof. Using Monod’s lemma one immediately reduces to the simple case. As in
the case of usual bounded cohomology one shows that the kernel of the comparison
map is given by by continuous homogeneous quasimorphisms modulo homomor-
phisms. Thus the proposition amounts to showing that every continuous homoge-
neous quasimorphism on a simple Lie group is trivial. This follows from a general
property of simple Lie groups called bounded generation by unipotents. We give
the details for G = SLn(R). Let gij(t) := exp(tEij), where Eij is the elementary
matrix which is 1 at the ij-th entry and 0 everywhere else. Then for i 6= j

lim
s→∞

gii(s)gij(t)gii(s)
−1 = e,

hence for every continuous homogeneous quasimorphism f and i 6= j we have by
Proposition 3.14

f(gij(t)) = lim
s→∞

f(gij(t)) = lim
s→∞

f(gii(s)gij(t)gii(s)
−1) = 0.

Now, by the Gauss algorithm, every matrix in SLn(R) can be written as a product
of no more than 100n2 matrixes of the form gij(t) with i 6= j. Therefore, f is
bounded by 100n2 · D(f). However, a bounded homogeneous quasimorphism is
trivial. �

So in order to understand H2
cb(G;R) for Lie groups, it suffices to understand

H2
c (G;R) for simple Lie groups.

5.2. Bounded Kähler class and Hermitian Lie groups.

Example 5.4. Consider the action of G := PU(1, 1) on the Poincaré disc D and
denote by ω ∈ Ω2(D)G the hyperbolic volume form ω = 1

1−(x2+y2)2 dxdy. Given

(x0, x1, x2) ∈ D denote by ∆(x0, x1, x2) the geodesic triangle with corners x0, x1, x2

and fix a basepoint o ∈ D. Then we obtain a homogeneous 2-cocycle cω,o : G3 → R
given by

cω,o(g0, g1, g2) :=
1

2π

ˆ
∆(g0.o,g1.o,g2.o)

ω.

Exercise 5.5. Show that the cohomology class κG := [cω,o] ∈ H2
c (G,R) is indepen-

dent of the choice of basepoint o. [Hint: Use that ω is closed.]

We refer to κG as the Kähler class of G. It turns out that

H2
c (G,R) ∼= R · κG.

Since every geodesic triangle is contained in an ideal triangle (of volume π) the
cocycle cω,o is bounded by 1/2. It thus defined a class κbG := [cω,o] ∈ H2

c (G,R),
called the bounded Käbler class. By injectivity of the comparison map, it is the
unique pre-image of the Kähler class in bounded cohomology.

Example 5.4 is the prototype of a very general theory based on the following ob-
servation of Cartan:

Lemma 5.6 (E. Cartan). Let G be a simple Lie group, X = G/K the associated
symmetric space and ω ∈ Ωn(X )G a G-invariant form. Then ω is closed.
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Proof. Let o ∈ X be a basepoint and assume ω ∈ Ωn(X )G. Since the geodesic
reflection σo at o normalizes G we have σ∗oω ∈ Ωn(X )G. Now, σ∗oω = (−1)nω;
indeed, the relation holds at the basepoint o and both sides are G-invariant. We
can apply the same argument also to dω to obtain σ∗o(dω) = (−1)n+1dω. Now we
get

(−1)ndω = d((−1)nω) = dσ∗oω = σ∗o(dω) = (−1)n+1dω,

showing that dω = 0. �

By Cartan’s lemma, we can integrate invariant forms on X over geodesic simplices
and thereby construct a map

I : Ωn(X )G → Hn
c (G;R), I(ω) =

[
(g0, . . . , gn) 7→ 1

2π

ˆ
∆(g0,...,gn)

ω

]
.

Lemma 5.7 (van Est). The map I : Ωn(X )G → Hn
c (G;R) is an isomorphism.

Proof. Ωn(X) is an injective resolution of the trivial module; by Cartan’s lemma
the differentials in the complex (Ωn(X)G, d) are trivial. �

One can try to estimate the integrals appearing in the explicit van Est formula. In
degree 2 (and only in degree 2), J. L. Dupont succeeded in doing so. Thereby he
proved:

Proposition 5.8 (Dupont, [18]). The cocycles in the image of the degree 2 van Est
map are bounded.

This yields in particular surjectivity of the comparison map in degree 2. For the
state of the art in higher degree see [24]. Combining everything we said so far we
obtain:

Corollary 5.9. Let G be a simple Lie group with symmetric space X = G/K.
Then

H2
cb(G;R) ∼= H2

c (G;R) ∼= Ω2(X )G.

Definition 5.10. A simple Lie group is called Hermitian if Ω2(X )G 6= {0}.

The geometry of Hermitian Lie groups is well-known. We only provide a few key-
words:

• If G is a Hermitian simple Lie group, then dim Ω2(X )G = 1.
• Every ω ∈ Ω2(X )G \ {0} is in fact a Käbler form on X , i.e. there exists

a complex structure J : TX → TX such that g(v, w) := ω(v, Jw) is a
Riemannian metric. This complex structure is unique, so X is canonically
a complex manifold. We refer to this complex manifold as a Hermitian
symmetric space. We can normalize ω so that the minimal holomorphic
sectional curvature of the Hermitian metric H = g + iω is −1. With this
normalization, ω becomes unique. We then denote by κG and κGb the
corresponding classes in H2

c (G;R) and H2
cb(G;R), called the Kähler class,

respectively bounded Käbler class of G.
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• Via the Harish-Chandra embedding theorem, every Hermitian symmetric
space X is isomorphic as a complex manifold to a bounded domain D ⊂
CdimX , which is unique up to unique isomorphism. The Riemannian metric
g (and hence ω) can be recovered from D as the Bergman metric associated
with the embedding into CdimX . A symmetric domain D isomorphic to a
symmetric space is called a bounded symmetric domain. Thus Hermitian
Lie groups are precisely the identity components of automorphism groups
(i.e. groups of biholomorphisms) of bounded symmetric domains.
• A tube domain in CN is a subdomain T = RN + iΩ, where Ω ⊂ RN is

an open convex sone. A bounded symmetric domain is of tube type it is
biholomorphic to a tube domain. The prototype of a tube domain is the
upper half plane; in particular, D is of tube type. We say that a simple
Hermitian Lie group is of tube type if the associated bounded symmetric
domain has this property. Thus PU(1, 1) is of tube type.
• Other example of Hermitian Lie groups of tube type include the real-split

symplectic groups Sp(2n) and the groups SU(n, n). The groups SU(p, q)
for p 6= q are examples of Hermitian Lie groups, which are not of tube type.

All the cohomological methods we have presented above use the second bounded
cohomology. Thus, with these methods, we can only obtain results about repre-
sentations into Hermitian Lie groups. For non-Hermitian Lie groups like SLn(R)
these methods are completely useless. In order to treat such groups, it would be
necessary to obtain a better understanding of bounded cohomology in degrees > 2.

5.3. The boundary resolution. Consider again the example of PU(1, 1) acting
on the Poincaré disc (D, ω). We have constructed a family of (boundedly) coho-
mologous cocycles cω,o depending on some basepoint o ∈ D. What happens if o
wanders off to the boundary?

Recall that every triple (ξ0, ξ1, ξ2) ∈ (S1)3 = (∂D)3 defines an ideal triangle
∆(ξ0, ξ1, ξ2). Thus for ξ ∈ S1 we can define a cocycle cω,ξ by the same formula

cω,ξ(g0, g1, g2) :=
1

2π

ˆ
∆(g0.ξ,g1.ξ,g2.ξ)

ω.

as before. However, something strange happens when passing to the boundary:
Every ideal simplex has volume π! Thus, cω,ξ(g0, g1, g2) = 1

2 · o(g0.ξ, g1.ξ, g2.ξ),
where

o(ξ0, ξ1, ξ2) =

 +1, (ξ0, ξ1, ξ2) non-degenerate and positively oriented
−1 (ξ0, ξ1, ξ2) non-degenerate and negatively oriented

0 (ξ0, ξ1, ξ2) degenerate.

is the orientation cocycle of the circle. This cocycle is still Borel measurable and
bounded, but no longer smooth. Now, by a theorem of D. Wigner, the cohomology
of a Lie group computed from Borel measurable cochains is isomorphic to the
cohomology computed from continuous cochains, in symbols

H•B(G;R) ∼= H•c (B;R).

Under this isomorphism, the cocycles cω,ξ represent the Kähler class. Burger and
Monod have proved that there is a similar isomorphism

H•Bb(G;R) ∼= H•cb(B;R),



28 TOBIAS HARTNICK

sending the class of cω,ξ to the bounded Kähler class. This is part of a more general
theory, which we briefly sketch:

The space S1 is the prototype of a boundary for the group PU(1, 1). For the
purposes of these notes let us call a standard Borel G-space B a weak G-boundary
if it an amenable G-space in the sense of Zimmer and the action of G on B × B
is ergodic. If you do not know what these words mean think of the following
examples, which suffice for our purposes: If G is a simple Lie group and P is a
minimal parabolic, then G/P is a weak G-boundary. Similarly, if Γ < G is a
lattice (e.g. a surface group in PU(1, 1)), then G/P is still a weak Γ-boundary.
For Gromov-hyperbolic groups, the Gromov boundary is a weak boundary. With
this terminology understood, the starting point of the Burger-Monod approach to
(continuous) bounded cohomology can be formulated as follows:

Proposition 5.11 (Boundary resolution). Let G be a locally-compact, 2nd count-
able group and B a weak G-boundary. Then

0→ R→ L∞(B)→ L∞(B2)→ L∞(B3)→ . . . ,

where all maps are given by the usual homogeneous differentials, is an injective
augmented resolution of the trivial Banach G-module R. Thus there is a canonical
isomorphism

H•cb(G;R) ∼= H•(0→ L∞(B)G → L∞(B2)G → L∞(B3)G → . . . )

Exercise 5.12. Show that the boundary resolution is homotopic to the alternating
boundary resolution

0→ L∞alt(B)→ L∞alt(B
2)→ L∞alt(B

3)→ . . . ,

where L∞alt(B
n) ⊂ L∞(Bn) denotes the subspace of alternating functions.

Let us specialize to degree 2: We have

H2
cb(G;R) =

Z2
alt(B)G

B2
alt(B)G

:=
ker(d : L∞alt(B

3)G → L∞alt(B
4)G)

Im(d : L∞alt(B
2)G → L∞alt(B

3)G)
.

Now, since G acts ergodically on B2, every G-invariant function on B2 is con-
stant, hence every alternating G-invariant function on B2 is 0. Thus there are no
coboundaries in degree 2 and we have:

Proposition 5.13. H2
cb(G;R) = Z2

alt(B)G = {c ∈ L∞alt(B3)G | dc = 0}.

This is the reason why the boundary resolution is very convenient for computations
in degree 2.

5.4. Functoriality and transfer. There is one major problem with the boundary
resolution, which concerns functoriality. Assume we are given two Lie groups G1

and G2 with respective weak boundaries B1 and B2 and a cohomology class α ∈
H2
cb(G2;R). How to pull back α via a homomorphism ρ : G1 → G2. It is not

completely trivial that there exists a unique equivariant map ϕ : B1 → B2, although
this is in fact the case by a result of Furstenberg (uniqueness is up to measure zero).
However, even in the most favorable situations, the image of B1 in B2 will typically
be a null set (unless B1 and B2 have the same dimension). However, it is not
possible to restrict an L∞-function (which is actually a function class, of course) to
a null set. Therefore we cannot implement the pullback via ϕ. There is no solution
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to this problem, only work-arounds. The most useful one is due to Burger and Iozzi
[4]:

Lemma 5.14 (Functoriality redeemed). Let G1, G2 be locally compact groups with
respective weak boundaries B1, B2. Let c : B3

2 → R be a bounded, alternating, G-
invariant measurable function with dc(ξ0, . . . , ξ3) = 0 for all (not just almost all!)
triples (ξ0, . . . , ξ3) ∈ B3. Then c defines a function class in Z2

alt(B)G, which in turn
defines a class α ∈ H2

cb(G2;R). Let ρ : G1 → G2 be a continuous homomorphism
and ϕ : B1 → B2 be an equivariant measurable map. Then the class defined by ϕ∗c
in H2

cb(G1;R) coincides with ρ∗α.

Note that in general there is no guarantee that a given cocycle can be represented by
a function c as above. Fortunately, in all known examples of bounded cohomology
classes on a boundary there is such a representative. (There are however examples,
due to Bucher and Monod, of L∞ cocycles on a flag variety associated with a
non-minimal parabolic, which cannot be represented by a measurable function as
above on that specific flag variety. This does not exclude the possibility that every
boundary cocycle has a representative as above, but it shows that if there is a
general principle, then it is necessarily quite subtle.)

One situation, where the above problems do not occur is when ρ : Γ → G is the
inclusion of a lattice. In this case, ρ∗ is realized by the inclusion map

Z2
alt(B)G → Z2

alt(B)Γ.

In particular, the restriction map H2
cb(G;R) → H2

b (Γ;R) is injective. The map
T 2
b : Z2

alt(B)Γ → Z2
alt(B)G given by

T 2
b f(x, y, z) :=

ˆ
Γ\G

f(gx, gy, gz)dg

yields an explicit left-inverse of this restriction map. By abuse of notation we also
write T 2

b for the induced map T 2
b : H2

b (Γ;R) → H2
cb(G;R), which is called the

bounded transfer map in degree 2.

5.5. The generalized Maslov index and the tube type dichotomy. Let G be
a Hermitian simple Lie group of tube type and let κG(b) denote its (bounded) Kähler

class. We know from the last section that there exists a unique bounded alternating
cocycle c : (G/P )3 → R representing κGb , where P is a minimal parabolic of G. The
G-equivariant quotients of G/P are precisely the flag varieties G/Q, where Q is
a parabolic containing P . Given such a parabolic Q there may or may not exist
a cocycle c̄ : (G/Q)3 → R representing κGb . If it does exists, then it is clearly
unique (since already c is). In this case we say that κGb can be represented on
G/Q. It turns out that bounded Kähler classes can be represented on a flag variety
associated with a distinguished maximal parabolic subgroup. We are now going to
describe this distinguished flag variety geometrically.

As mentioned earlier, we can always realize G as the groups of biholomorphisms of
a bounded symmetric domain D ⊂ CN . An example to keep in mind is given by
the matrix ball

Dn := {X ∈Mn(C) |M symmetric,1−M∗M positive definite},
for which we have Aut(Dn) ∼= PSp(2n), the action being by generalized fractional
linear transformations.
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Exercise 5.15. Show that the matrix ball Dn is of tube type by providing an explicit
biholomorphism with the Siegel upper half plane

Hn := {X + iY ∈ Symn(C) |X,Y ∈ Symn(R), Y positive definite}.

[Hint: For n = 1 the biholomorphism is the Cayley transform. Now observe that
the explicit formula for the Cayley transform makes sense also for matrices.]

We now return to the general case: The topological boundary ∂D := D\D depends
on the concrete realization D. However, there is always a unique closed G-orbit in
D, which is independent of the realization and called the Shilov boundary Š of G.
It is the smallest compact subset of ∂D such that the maximum principle holds, i.e.

sup
z∈D

f(z) = sup
z∈Š

f(z).

for every continuous function f on D, which is holomorphic in D.

Example 5.16. In the case of the matrix ball, the topological boundary is formed
by all complex symmetric matrices M for which 1−M∗M is positive semi-definite,
but not positive definite. The G-orbits inside this topological boundary are given
by those matrices of a constant rank r with 0 ≤ r ≤ n− 1, i.e. there are n different
G-orbits. The unique closed G-orbit, i.e. the Shilov boundary, is simply given by
the rank 0 component

Šn := Symn(C) ∩ U(n).

Returning to the general case we observe that since Š is closed in D it is always
a compact homogeneous G-space, i.e. a flag variety. Thus there exists a maximal
parabolic Q (unique up to conjugation) such that

Š ∼= G/Q.

We refer to Q and its conjugates as Shilov parabolics. One can now try to proceed
as in the PU(1, 1)-case and to push the Kähler cocycle cω,o to the Shilov boundary

by letting o → ξ ∈ Š. It is not at all obvious that such an approach can work,
and indeed one has to be very careful from which directions one approaches the
Shilov boundary, in particularly for non-transversal triples of points. In any case,
it is possible to construct a limiting cocycle βŠ . For PU(1, 1) we have seen that
βŠ is a multiple of the orientation cocycle. In the case of the symplectic groups
Sp(2n), the cocycle βŠ is also a classical object of symplectic geometry, namely the
so-called Maslov index. For general Hermitian G, the generalized Maslov index βŠ
was constructed by Clerc [13]. Once the generalized Maslov index is constructed,
it is not too hard to see that it does realize the bounded Kähler class:

Proposition 5.17 (Shilov realizability, [13]). Let G be a simple Lie group of Her-
mitian type, Š the associated Shilov boundary and κGb the bounded Kähler class.

(i) The generalized Maslov index βŠ is a bounded measurable, alternating G-
invariant function.

(ii) The generalized Maslov index is continuous on the set Š(3) of pairwise trans-
verse triples and satisfies dβŠ = 0 pointwise.

(ii) The bounded Kähler class κGb can be represented on Š, and the unique
representing cocycle is precisely the generalized Maslov index.
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We emphasize that in order to know the bounded cohomology class defined by the
Maslov index it is enough to know βŠ on the generic set Š(3). However, in order
to use Lemma 5.14 one needs to know that βŠ extends to a pointwise measurable

cocycle on all of Š3. This is the most difficult part of Proposition 5.17. On the
other hand, the restriction of βŠ to the generic set Š(3) is very-well understood. It
was first described by Clerc and Ørsted in [14]. In [6] Burger, Iozzi and Wienhard
provide a formula in terms of what they call the Hermitian triple product. A
consequence of this formula is the following dichotomy:

Proposition 5.18 (Bounded Kähler class dichotomy, [6]). (i) If G is of tube
type, then βŠ |Š(3) is locally constant and thus takes only a finite set of
rational values.

(ii) If G is not of tube type, then βŠ |Š(3) takes a continuum of values.

5.6. Relation to bounded Euler class. As pointed out by Iozzi in [25] one can
use the boundary resolution to give a simple proof of the following fact, which will
be needed below:

Proposition 5.19. Let ι : PU(1, 1) → Homeo+(S1) denote the standard embed-

ding. Then ι∗eRb = κ
PU(1,1)
b .

Proof. LetH := Homeo+(S1). Let c : H3 → R be the cocycle given by c(h0, h1, h2) =
o(h0.1, h1.1, h2.1). In view of the boundary model it then suffices to show that c is
boundedly cohomologous to the standard representative eσ of eRb . In fact we claim
that

(5.1) eσ − c = dβ,

where

β(f, g) =

{
− 1

2 f(1) 6= 1,
0 otherwise.

�

Exercise 5.20. Show the equality (5.1). (If you get stuck, you may want to consult
[25]).

Note that as a consequence we also get ι∗eR = κPU(1,1) for free, using naturality of
the comparison map.

6. Applications to Shilov-Anosov representations

6.1. Shilov-Anosov representations and bounded Kähler class. We pause
for a moment to give a first application of the material of the last section. Let G
be a Hermitian Lie group of tube type, Q a Shilov-parabolic and Q− a parabolic
opposite G. It turns out that Q and Q− are conjugate, hence G/Q ∼= G/Q− ∼= Š.
Assume now that ρ : Γg → G is a (Q,Q−)-Anosov-representation, or Shilov-Anosov
representation for short. Using our machinery we prove:

Proposition 6.1. Let ρ : Γg → G be a Shilov-Anosov representation. Assume that

G is of tube type. Then there exists λ ∈ Q such that ρ∗κGb = λ · κΣg

b .
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Proof. By the Guichard-Wienhard characterization of Anosov representations (see
[17]) there exists a continuous ρ-equivariant map ϕ : S1 → Š which maps (S1)(3)

to Š(3). By Lemma 5.14 and (the hard part of) Proposition 5.17 the class ρ∗κGb is
represented by the cocycle ϕ∗βŠ . Now

ϕ∗βŠ |(S1)(3) → Q

is continuous with discrete image (by the bounded Kähler class dichotomy), thus
locally constant. However, the only alternating cocycles on S1, which are locally
constant on (S1)(3) are the multiples of the orientation cocycle. We deduce that
ϕ∗βŠ = λ · o, and since the left-hand side is rational almost everywhere, so is the
right hand side. �

6.2. The Toledo invariant. We would like to combine Proposition 6.1 and The-
orem 4.11 to obtain discreteness and faithfulness of Shilov-Anosov representations.
However, for this we need to know that the constant λ appearing in Proposition
6.1 is non-zero. We thus need to understand the meaning of this constant.

There is a special relevance to classes in H2(Γg;R). due to the fact that surfaces
are two-dimensional. Namely, H2(Σg;R) = R · [Σg], where [Σg] is the fundamental
class. Thus we have a canonical evaluation map

H2(Γg;R) ∼= H2(Σg;R)→ R, α 7→ 〈α, [Σg]〉.

Consider now the special case of κΣg . By Proposition 5.19 we have κΣg = κPU(1,1)|Γg ;

thus in the de Rham model, κΣg is represented by 1
2π times the hyperbolic volume

form. We deduce that

〈κΣg , [Σg]〉 =
1

2π

ˆ
Σg

dvol = |χ(Σg)| = 2− 2g.

We conclude that if ρ : Γg → G is a representation with

(6.1) ρ∗κGb = λ · κΣg

b ,

then

ρ∗κG = λ · κΣg ,

and hence

〈ρ∗κG, [Σg]〉 = λ · 〈κΣg , [Σg]〉 = λ · |χ(Σg)|,
i.e.

(6.2) λ =
〈ρ∗κG, [Σg]〉
|χ(Σg)|

.

Definition 6.2. Let G be a Hermitian simple group, κG its Kähler class, Γg a
surface group and ρ : Γg → G a representation. Then the number

T (ρ) := 〈ρ∗κG, [Σg]〉 ∈ Q

is called the Toledo invariant of the representation ρ.

Note that T (ρ) takes a discrete set of rational values, since κG is rational. Moreover,
as a consequence of (6.2) we see that λ as given in (6.1) vanishes if and only if the
Toledo invariant vanishes. Combining this with Proposition 6.1 and Theorem 4.11
we have obtained a complete proof of the following result:
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Theorem 6.3. Let ρ : Γg → G be a Shilov-Anosov representation into a Hermitian
Lie group of tube type with non-zero Toledo invariant. Then ρ is faithful and its
image is discrete.

Of course, as we have already seen in [17, 31], much more is true: Any Anosov
representation is essentially discrete and faithful. However, the proof given here
is still interesting in its own right, since one can push its idea quite a bit further:
Firstly, the assumption that G be of tube type is actually unnecessary, since one
can show that every Shilov-Anosov representation with non-zero Toledo invariant
preserves a subdomain of tube type. Secondly, and more importantly, we manage
in [1] to extend the result to cover also the following case:

Theorem 6.4. Let G be a Hermitian Lie group and ρ : Γg → G a representation of
non-zero Toledo invariant which is a limit of Shilov-Anosov representations. Then
ρ is faithful and its image is discrete.

Using the theorem we provide new examples of discrete, faithful representations
which are not Anosov. The following problem is open to the best of my knowledge:
Consider a discrete and faithful representation ρ : Γg → Sp(4), which is Zariski-
dense and of non-zero Toledo invariant. Is it true that (6.1) holds for some λ ∈ R?
Representations satisfying this condition are called weakly maximal. So far we do
not know any other discrete faithful representations, but this is probably mainly
because we have no other tools to detect discreteness and faithfulness than the
cohomological ones explained here.

7. Bounded cohomology III: The Gromov seminorm

7.1. Motivation: Boundedness of the Toledo-invariant. We have seen in the
last section that the Toledo-invariant of a representation of a surface group into a
Hermitian simple Lie group yields valuable information. We observe:

Proposition 7.1. For a given Hermitian simple Lie group G, the Toledo invariant
T : Rep(Γg;G)→ R takes only finitely many values.

Proof. It is not hard to see that T is continuous; since it range is discrete, it is
thus locally constant. However, Rep(Γg;G) as an algebraic variety has only finitely
many connected components. �

We thus know that the supremum CG,Γg
:= supρ |T (ρ)| taken over the represen-

tation variety Rep(Γg;G) is finite - can we determine its value? Since the range
of the Toledo invariant is finite, the supremum is actually attained - but for which
representations? We will answer these type of questions using bounded cohomology.

7.2. The Gromov seminorm. Gromov’s work on bounded cohomology was to
a large extend based on the fundamental observation that the cohomology of a
cocomplex of Banach spaces with continuous codifferentials carries a canonical semi
norm, and on exploiting such seminorms geometrically. More concretely, consider
the standard homogeneous resolution

0→ C0
b (G)G → C1

b (G)G → . . .
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The space Cnb (G) are Banach spaces when equipped with the sup-norm, hence so
are there closed(!) subspaces Cnb (G)G and ZCnb (G)G. Unfortunately the subspace
of coboundaries need not be closed in this space, whence Hn

b (G;R) is in general
not Hausdorff with respect to the quotient topology, let alone a Banach space. The
best we can do is to consider the seminorm

‖α‖ := inf{‖c‖∞ | c ∈ α}

on Hn
b (G;R). Another drawback is that this semi norm is not canonical: We can

easily write down injective resolution, which lead to a different semi norm on the
level of cohomology. Indeed, it suffices to rescale the differentials. Despite all these
shortcomings, the seminorm ‖ · ‖ is extremely useful. It is often referred to as
the Gromov seminorm, although Gromov was by no means the first to consider it.
(However, he was probably the first to provide substantial applications.)

One immediate property of the Gromov semi norm, which is extremely useful, is
the following:

Proposition 7.2. For every α ∈ H•cb(G;R) and every ρ : H → G we have

‖ρ∗α‖ ≤ ‖α‖.

As we said, if we replace the homogeneous bar resolution by another injective
resolution, then the induced isomorphism is in general not isometric. However,
there are a couple of nice injective resolutions, which do indeed compute the same
seminorm. We refer to these as isometric resolutions. For us the key example is as
follows:

Proposition 7.3 (Burger-Monod, [9]). The boundary resolution and the alternat-
ing boundary resolution are isometric.

As an immediate consequence we deduce:

Corollary 7.4. The Gromov seminorm on H2
b (G;R) is a norm for any locally-

compact, second countable group G.

The following section exploits some less obvious consequences of Proposition 7.3.

7.3. The Gromov seminorm and transfer. Throughout this section let G =
PU(1, 1) and Γ ∼= h(Γg) be the image of Γg under a hyperbolization h, i.e. a
cocompact lattice in G. We have seen above that the restriction map H2

cb(G;R)→
H2
b (Γ;R) has a left-inverse T 2

b : H2
b (Γ;R)→ H2

cb(G;R) given by bounded transfer.
From the explicit formula for T 2

b we deduce:

Lemma 7.5. The bounded transfer map T 2
b : H2

b (Γ;R)→ H2
cb(G;R) is norm non-

increasing, i.e. ‖Tbα‖ ≤ ‖α‖.

We also recall that H2
cb(G;R) = R · κGb , where κGb is represented by 1

2 · o in the

boundary resolution. We draw two consequences: Firstly, for every α ∈ H2
b (Γ;R)

there exists τ(α) ∈ R such that

(7.1) Tbα = τ(α) · κGb .

Secondly, we have ‖κGb ‖ = ‖ 1
2 · o‖∞ = 1

2 . We observe:
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Proposition 7.6. For every α ∈ H2
b (G;R) we have

|τ(α)| ≤ 2‖α‖.

Equality holds if and only if α is a multiple of κ
Σg

b .

Proof (cf. [5]). In view of Lemma 7.5 we have

‖α‖ ≥ ‖Tbα‖ =

∥∥∥∥τ(α)

2
· o
∥∥∥∥ =

1

2
· |τ(α)|,

which gives the desired inequality. Now assume that equality holds. We may assume
without loss of generality that τ(α) ≥ 0. Let c be a cocycle representing α in the
boundary resolution. Then τ(α) = 2‖c‖∞, and thus

‖c‖∞ · o(x, y, z) = τ(α) · o(x, y, z)
2

= T 2
b c(x, y, z) =

ˆ
Γ\G

c(gx, gy, gz)dg,

which by G-invariance of β we can rewrite asˆ
Γ\G
‖c‖∞ · o(gx, gy, gz)− c(gx, gy, gz)dg = 0.

Assume now that the triple (x, y, z) is positively oriented. Then the above formula
specializes to ˆ

Γ\G
‖c‖∞ − c(gx, gy, gz)dg = 0,

which implies c(gx, gy, gz) = ‖c‖∞ for almost all g. Since g acts 3-transitively, this
means that c is constant on positively oriented generic triples; combined with the
antisymmetry it follows that c is almost everywhere a multiple of the orientation
cocycle as claimed. �

We can actually express the number τ(α) more explicitly:

Proposition 7.7. For every α ∈ H2
b (Γ;R) we have

τ(α) =
〈c2Γ(α), [Σ]〉
|χ(Σg)|

Proof. There is a natural transfer map T 2 : H2(Γ;R) → H2
c (G;R) in usual (con-

tinuous) cohomology, and the comparison map intertwines this with the bounded
transfer discussed above. In particular, T (c2Γ(α)) = τ(α) · κG = T (τ(α) · κΣg ).
Now since dimH2(Γ;R) = dimH2

c (G;R) = 1, the transfer map is an isomorphism,
whence c2Γ(α) = τ(α) · κΣg , and thus

〈c2Γ(α), [Σ]〉 = τ(α) · 〈κΣg , [Σ]〉 = τ(α) · |χ(Σg)|.
�

Combining both propositions we deduce:

Corollary 7.8. Let α ∈ H2
b (Γ;R). Then

〈c2Γ(α), [Σ]〉 ≤ 2 · |χ(Σg)| · ‖α‖
with equality if and only if α is a multiple of κGb .

Note that the proof of the inequality in Corollary 7.8 is essentially trivial: All the
work went into the understanding of the equality case.
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8. Maximal representations

8.1. Generalized Milnor-Wood inequality and maximal representations.
Throughout this section letG be a Hermitian simple Lie group and let ρ : Γg → G be
a representation. The following result is due to Milnor [28]5 in the caseG = PU(1, 1)
and due to Burger, Iozzi and Wienhard [8] in the general case.

Theorem 8.1 (Generalized Milnor-Wood inequality). The Toledo invariant satis-
fies

T (ρ) ≤ |χ(Σg)| · rk(G).

Equality holds if and only if the following two conditions are satisfied:

(i) ρ∗κGb = rk(G) · κΣg

b .
(ii) ‖ρ∗κGb ‖ = ‖κGb ‖.

Proof. Combining Corollary 7.8 and Proposition 7.2 We have the chain of inequal-
ities

T (ρ) = 〈ρ∗κGb , [Σ]〉
≤ 2 · |χ(Σg)| · ‖ρ∗κGb ‖
≤ 2 · |χ(Σg)| · ‖κGb ‖
= 2 · |χ(Σg)| · ‖κGb ‖,

Now the generalized Milnor-Wood inequality follows from the formula

‖κGb ‖ =
1

2
· rk(G),

which is due to Clerc and Ørsted [15] in general and Domic and Toledo [16] for the
classical groups. Equality in the generalized Milnor-Wood inequality holds if and
only the two equalities 〈ρ∗κGb , [Σ]〉 = 2 · |χ(Σg)| · ‖ρ∗κGb ‖ and ‖ρ∗κGb ‖ = ‖κGb ‖ hold.
By Corollary 7.8 the former equality is equivalent to the existence of λ ∈ R wit

ρ∗κGb = λ · κΣg

b , and then (ii) implies λ = rk(G). �

Motivated by this inequality we define:

Definition 8.2. A representation ρ : Γg → G is called a representation of maximal
Toledo invariant (or maximal representation for short) if

T (ρ) = |χ(Σg)| · rk(G).

It is called weakly maximal if there exists λ ≥ 0 such that ρ∗κGb = λ · κΣg

b and tight
if ‖ρ∗κGb ‖ = ‖κGb ‖.
Corollary 8.3. A representation is maximal if and only if it is weakly maximal
and tight.

Combining this with Theorem 4.11 we deduce:

Theorem 8.4. Every maximal representation (in fact, every weakly maximal rep-
resentation of non-zero Toledo invariant) is discrete and faithful.

In fact, maximal representations are Shilov-Anosov. We will not prove this here,
though.

5There is a corresponding result in the non-orientable case due to Wood [30].
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8.2. Goldman’s characterization of hyperbolizations. Specializing to the case
G = PU(1, 1) we obtain:

Theorem 8.5. Let ρ : Γg → PU(1, 1) be a representation. Then the following are
equivalent:

(i) ρ is maximal.
(ii) T (ρ) = |χ(Σ)|.

(iii) ρ∗κGb = κ
Σg

b .

(iv) ∃λ > 0: ρ∗κGb = λ · κΣg

b .
(v) ρ is discrete, faithful and orientation-preserving.
(vi) ρ is a hyperbolization.

Proof. The implications (i)⇔(ii)⇔(iii)⇒(iv)⇒(v) have been discussed above in
greater generality. The implication (v) ⇒ (vi) is a classical result of Dehn, Nielsen
and Baer, and (vi) ⇒ (iii) holds by definition. �

The equivalence (i)⇔(vi) was first established by Goldman in his thesis [21]. This
was one of the starting points of higher Teichmller theory in general, and the theory
of maximal representations in particular.

8.3. Maximal representations and Higgs bundles. One reason for the broad
interest in the theory of maximal representations is the fact that they give rise
to Higgs bundles, hence are amenable to harmonic map techniques. Given a rep-
resentation ρ : Γg → G there is always a unique homotopy class of equivariant
maps D → X = G/K. However, this homotopy class of maps admits a harmonic
representative if and only if the Zariski closure of ρ(Γg) in G is a reductive sub-
group. Therefore the following result of Burger, Iozzi and Wienhard is crucial for
the theory of Higgs bundles:

Theorem 8.6 ([7]). Maximal, and in fact all tight representations have reductive
Zariski closure.

The proof is another example for the use of cohomological techniques. In view of
the cohomological definition of tight representations this is not surprising. In any
case, this is a story for another time.
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INTRODUCTION TO POSITIVE REPRESENTATIONS

(FOLLOWING FOCK-GONCHAROV)

FREDERIC PALESI

Abstract. In this talk, we will try to give a simple description of the set of positive rep-
resentations of the fundamental group of a surface with non-empty boundary to the group
PSL(m,R), as defined by Fock and Goncharov [1]. For each step of the construction, we will
consider the classical cases m = 2 and m = 3 before turning to the general case. We will also
give the main property of these representations, namely their faithfulness and discreteness.

1. Introduction

Given a surface Sg,s of genus g with s boundary components, there are well-known coordi-
nates on the (classical) Teichmüller space which are given by Thurston shearing coordinates.
On the other hand, points in Teichmuller spaces can also be seen as conjugacy classes of
representations of the fundamental group of the surface into the group PSL(2,R) satisfying
various properties (discrete, faithful, etc ...). In this talk, we will show that it is possible to
define complex coordinates on the bigger moduli space of representations into PGL(2,C) (in
fact a finite ramified cover over this space) and see that Teichmuller space will be exactly the
representations for which the coordinates are real positive. What is more interesting is that
it is possible to generalize this picture to the case of PGL(m,C).

So the purpose of this talk will be to define the set of framed representations of a surface
group into PGL(m,C) and define global coordinates on it using a triangulation of the surface.
The coordinates will depend on the triangulation, but the set of representations with positive
coordinates will be the same for all triangulations. This set of positive representations will be
the so-called higher Teichmüller space in the sense of Fock and Goncharov. While the positive
representations might be defined for a general split semi-simple real Lie group, using Lustzig
notion of total positivity, we will restrict ourselves to the simpler case G = PSL(m,R) where
everything can be made explicit.

To understand the properties of positive representations, we will see how to construct a
representations from a given set of coordinates. We will also see that a positive representation
defines a positive map from the Farey set of the surface to the flag variety, and that this notion
can be generalized to closed surfaces

These notes constitute an introduction to some ideas of the definitions and properties of
positive representations. We avoid technical difficulties in definitions and the proofs are only
sketched here. For the correct definitions, and detailed proofs, one should obviously refer to
the original articles of Fock and Goncharov [1, 2, 3].

Date: August 22, 2013.
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2. Framed representations

Let S be a compact orientable surface of genus g with s ≥ 1 open discs removed. The
standard presentation of the fundamental group is given by :

π1(S) = 〈A1, B1, . . . , Ag, Bg, C1, . . . , Cs |
g∏
i=1

[Ai, Bi]
s∏
j=1

Cj〉

where the Cj correspond to the homotopy type of a curve going aroung the j-th hole. Let G
be a Lie group. The moduli space of representations into G is

RG(S) = Hom(π1(S), G)/G

where the action of G is by conjugation. (Note that one should take the GIT quotient instead
of the topological quotient to make this space Hausdorff, but we will avoid this discussion in
order to simplify this exposition).

We are going to describe a ramified cover of the space RG(S) which will be the space of
framed representations and will be denoted XG(S). The additional data is given by choices
of flags in Cm, and hence we first recall the necessary vocabulary on flags in a vector spaces.

2.1. Flags.

Definition 2.1. A (complete) flag F in a finite dimensional vector space V is an increasing
sequence of subspaces of V such that

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fm = V

with dimFk = k.

A basis (e1, . . . , em) is said to be adapted to the flag if the first k elements provide a basis
of Fk. The stabilizer subgroup Stab(F ) ⊂ G of a complete flag is identified with the set of
invertible upper triangular matrices with respect to any basis adapted to the flag.

Let F = (F1, . . . , Fm) and F ′ = (F ′1, . . . , F
′
m) be two complete flags. We say that the pair

of flags is in generic position if for any k we have Fk ∩ F ′m−k = {0}. We say that a k-uple of
flag is in generic position, if any pair of flag is in generic position.

Note that for a generic k-uple of flags (A(1), . . . , A(k)) in Cm and dimensions of subspaces
i1, . . . , ik, the dimension of a direct sum is given by

dim(A
(1)
i1

+ · · ·+A
(k)
ik

) = min(m, i1 + . . . ik)

Hence if i1 + . . . ik ≤ m then the sum is direct.
The group G = PSL(m,R) or PGL(m,C) (depending on the field of the vector space V )

acts naturally on flags by left multiplication. Obviously this action is transitive. The group
G also acts on k-uples of flags. The space of G-orbits of k-uples of flags is called the space of
configuration of k flags in Cm, also denoted Confk(Cm). If we restrict to k-uples of flags in
generic position, the space is denoted Conf∗k(Cm).

Lemma 2.2. The group G acts transitively on couple of flags in generic position. Moreover,
the stabilizer of a couple of flag is the group of diagonal matrices in a basis adapted to one of
the flag.

Proof. Left as an exercise �
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2.2. Definition.

Definition 2.3. A framed representation of S is given by the data of a representation ρ ∈
Hom(π1(S),PGL(m,C)) and flags (F1, . . . , Fs) in Cm associated to each connected component
of ∂S, such that if Cj ∈ π1(S) corresponds to a boundary curve, then the corresponding flag
is invariant by ρ(Cj).

The group PGL(m,C) acts naturally on framed representations by conjugation on the rep-
resentation and left multiplication on the flags. Hence we define the moduli space of framed
representation as the quotient of the set of framed representations by the action of G, and we
denote it by XPGL(m,C)(S).

A generic element ρ(Cj) ∈ PGL(m,C) corresponding to a boundary component have m
invariant eigendirections. Hence there are m! choices of invariant flags over a boundary circle
corresponding to all possible ordering of the projective basis of eigendirections. However, when
the eigenvalues are not all distinct (for example when the element is parabolic), then there
are fewer choice of invariant flags, (and possibly only one). Hence, the space XPGL(m,C)(S) is
a ramified cover of RPGL(m,C)(S).

Remark 2.4. One can extend this definition to surfaces with finite number of marked points
removed on the boundary. In this case, the flags attached to the connected component of the
boundary that are segments have no restrictions. This could allow us to identify a configuration
of k flags as a framed representation of a disc with k marked points on the boundary.

2.3. Triangulations of surfaces. Let S be a surface of genus g with s boundary components,
such that χ(S) = 2−2g−s < 0. Shrink all boundary components to points. Then the surface
S can be cut into triangles with vertices at the shrunk boundary components. We call it an
ideal triangulation of S.

Let T be a triangulation, and V (T ), E(T ), F (T ) the set of vertices, arcs, external arcs and
faces of the triangulation T . Simple computation using the Euler characteristic give

(1) |V (T )| = s
(2) |E(T )| = 6g − 6 + 3s
(3) |F (T )| = 4g − 4 + 2s

3. Coordinates on moduli space of framed structure

We are now going to describe coordinates for the spaces XG(S). One of the main idea to
find coordinates is to use a triangulation and decompose the space into a product of simpler
space, that will correspond to moduli spaces of triples of flags and quadruples of flags. Hence,
the coordinates are divided into two groups :

• The triangle invariants which corresponds to coordinates on Conf∗3(Cm).
• The edge invariants which parametrize the possible gluing of two triple of flags along

an edge. We will show that this is parametrized by a maximal torus in PGL(m,C).

Theorem 3.1. Let S be a surface and T an ideal triangulation. There is a birational iso-
morphism :

πT : XG(S) −→
∏

t∈F (T )

(Conf∗3(Cm))×
∏

e∈E(T )

H

where H is a maximal torus in PGL(m,C).
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The demonstration of this theorem will occupy this section where the map πT will be
explicitly constructed, and the next section where π−1T will be determined.

We will first study the classical case of PGL(2,C) where the invariants will be related to
Thurston shearing coordinates on Teichmüller space. Then, we will see the case of PSL(3,C)
where one has to understand the triple-ratio of a triple of flags in C3. The general coordinates
will easily be constructed from this two basic cases.

3.1. Cross-ratios in the m = 2 case. A flag in C2 is simply given by a direction in C2

or equivalently a point in CP 1. A classical result states that PGL(2,C) acts transitively on
generic triples of flags in CP 1, so there is only one orbit of generic triples of flags. Hence,
the space Conf∗3(C2) is reduced to a single point. Note that a maximal torus in PGL(2,C) is
isomorphic to C∗. Hence we simply have to find a unique coordinate for the configuration of
four flags in CP 1.

Let A,B,C,D be four flags in C2 in generic position, assimilated to points in CP 1. We
can consider that these four flags are attached to the vertices of a quadrilateral. Take the
triangulation of this quadrilateral with an edge joining (the vertices associated to) A and C.
We are going to associate a coordinate to this configuration and attach it to the edge AC.

The coordinate is given by he cross ratio of the 4 points (A,B,C,D) (in the correct order)
in CP 1. denoted by

[A,B,C,D] =
(A−D)(B − C)

(A− C)(B −D)

This definition is equivalent to the following one : send the first triangle (A,B,C) to 0,−1,∞
(which is possible as the action is transitive) and then the fourth vertex is sent to a point
x ∈ CP 1 which is exactly this cross-ratio. Note that this definition is not exactly the standard
definition, but there is a sign-change. This is due to the fact that we want the cross-ratio to
be positive in specific situations.

Now let S be a general surface. Let [ρ̂] be a conjugacy class of framed representation and T

a triangulation of S. We can lift this triangulation to a triangulation T̃ of the universal cover

S̃. Starting with a choice of an arbitrary choice of a flag at a vertex of T̃ we can associate to

each vertex of the triangulation T̃ a flag in a ρ-equivariant way. We can associate a coordinate
for each edge of this triangulation by computing the cross-ratio of the four-points defined by
the edge. We can restrict ourselves to a fundamental domain of the universal cover, as the
ρ-equivariance ensures that the coordinates are invariant by deck transformation. Hence we
have the map

ΦT : XPGL(2,C)(S) −→ (C∗)|E(T )|

that will give a set of coordinates on the moduli space of framed representations.

3.2. Triple ratio in the m = 3 case. We need to understand the moduli space of config-
uration of triples of flags in C3, and find coordinates on it. A flag in C3 is given by a line
and a plane, or equivalently by a point and a line in CP 2. Heuristically, the space of triples
of flags is of dimension 9 (dimension 3 for each flag) while the group G = PGL(m,C) is of
dimension 8. Hence the moduli space of configuration is of dimension 1, and we shall need
only one invariant to describe it. This invariant is given by the triple ratio defined as follows.

Let A = (A1, A2), B = (B1, B2) and C = (C1, C2) be a triple of flag, where dimAi = i.
Choose vA, vB, vC some direction vectors for the lines A1, B1 and C1. and let fa, fb, fc ∈ (C3)∗
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be linear forms representatives defining the planes A2, B2 and C2. The triple ratio is given
by :

X := r3(A,B,C) =
fa(vb)fb(vc)fc(va)

fa(vc)fb(va)fc(vb)

This does not depend on the choices of the vectors or the linear form (easy exercise).
This quantity is a complete invariant of generic configuration of three flags. Namely, if two
flags A,B,C and A′, B′, C ′ have the same triple ratio, then there exists a unique element
g ∈ PGL(m,C) such that g(A) = A′, g(B) = B′ and g(C) = C ′ (left as an exercise).

Now we can look at the moduli space of configuration of four flags in C3. Let A,B,C,D be
four flags in C3 in generic position and such that we have r3(A,B,C) = X and r3(A,C,D) =
Y . We want to construct invariants using cross-ratio of quadruples of points in CP 1 associated
to the edge AC. Note that four planes in C3 sharing a line in common define four lines in C2

by projection, and hence can be turned into four points in CP 1.
The four planes (A2, A1⊕B1, A1⊕C1, A1⊕D1) all contain the line A. Hence, we can define

their cross-ratio Z and get an element in C∗. Similarly the four planes (C2, C1 ⊕ D1, C1 ⊕
A1, C1 ⊕B1) all contain the line C1. So we can also define their cross-ratio W .

Proposition 3.2. The map

Conf∗4(C3) −→ (C∗)4

(A,B,C,D) 7−→ (X,Y, Z,W )

is a birational isomorphism.

Now let S be a general surface. Let [ρ̂] be a conjugacy class of framed representation and T
an ideal triangulation of S. Again on each vertex of the lifted triangulation, we can associate
the flag of the corresponding element of ∂S in a ρ-equivariant way. Hence, for each triangle
of the triangulation we can associate a coordinate by computing the triple-ratio of the triple
of flags associated to the vertices. And for each edge of the triangulation, we can associate
the two coordinates corresponding to the two cross-ratio as above. Hence we have a map

ΦT : XPGL(3,C)(Ŝ) −→ (C∗)2|E(T )|+|F (T )|

which gives 16g − 16 + 8s coordinates for the moduli space of framed representations.

3.3. Coordinates in the general case. When m ≥ 3 the same ideas are used to construct
coordinates. The triangle invariants are computed by restricting the flags in Cm to C3 and
the edge invariants are computed by finding four planes sharing a line in C3.

3.3.1. Invariants of triples of flags. Let m ≥ 3 and A, B and C be a generic triple of flags in
Cm. Denote by Ak the subspace of dimension k in the flag A. The main idea to get invariants
of triple of flags is to extract from the three flags in Cm, a certain number of triples of flag in
C3 in a clever way.

Let i, j, k ≥ 1 such that i + j + k = m. The direct sum Wi,j,k = Ai−1 ⊕ Bj−1 ⊕ Ck−1 is a
subspace of dimension m− 3. Hence the quotient Vi,j,k = Cm/W is isomorphic to C3.

We can take the projection of the subspace Ai and Ai+1 on V , and this give a flag A(i,j,k) =
(Ai, Ai+1) in Vi,j,k. Similarly, we get two other flags B(i,j,k) and C(i,j,k) by projecting B and
C on Vi,j,k. Hence we have a triple of flags in C3 and hence we can compute :
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Xi,j,k(A,B,C) = r3(A
(i,j,k), B(i,j,k), C(i,j,k))

Obviously, this quantity is an invariant of triples of flags in Cm. For each i + j + k = m

we get another invariant. This gives (m−1)(m−2)
2 coordinates in C∗. We see that this number

should be equal to the dimension of the space of configuration of three flags in Cm. Indeed
we have

Proposition 3.3. The map

Conf3(Cm) −→ (C∗)
(m−1)(m−2)

2

(A,B,C) 7−→ {Xi,j,k(A,B,C)|i, j, k ≥ m, and i+ j + k = m, }
is a birational isomorphism.

3.3.2. Invariants of quadruples of flags. Let A,B,C,D be a quadruple of flags in Cm. The
main idea is to extract several quadruples of lines in C2, that we will associate to this edge

Let i, j ≥ 1 such that i + j = m. The direct sum Ui,j = Ai−1 ⊕ Cj−1 is a subspace of
dimension m− 2. Hence the quotient Vi,j = Cm/Ui,j is isomorphic to C2

We can take the projection of Ai, B1, Cj and D1 that we denote A(i,j), B(i,j) , C(i,j) and

D(i,j) on this subspace. And this will give a quadruple of lines in C2 so we can compute :

Xi,j(A,B,C,D) = [A(i,j), B(i,j), C(i,j), D(i,j)]

This quantity is an invariant of quadruple of flags in Cm. For each i+j = m we get another
invariant. This gives m− 1 coordinates in C∗ that we attach to an edge. This is exactly the
dimension of a maximal torus H in PGL(m,C).

3.3.3. Coordinates for a general surface. Let S be a general surface, with a triangulation. To
visualize easily all the invariants and their relation, we use an m-triangulation of the surface
S, where each original triangle is divided into more triangles as seen on the figure below. Each
vertex of this m-triangulation correspond to a triple (i, j, k) such that i, j, k ≥ 0 are integers
and i+ j + k = m.

Figure 1. 4-triangulation : Each point corresponds to a triple (i, j, k) where
at least two are non-zero

For each point, except the vertices of the original triangle, on this m-triangulation, we
associate a coordinate. Namely, to each vertex in the interior of a triangle corresponds a
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triple i, j, k ≥ 1 such that i + j + k = m so we can associate a triangle invariant. and for
each vertex in the interior of a side of the triangle corresponds a couple i, j ≥ 1 such that
i+ j = m so we can associate an edge invariant.

Let N(S,m) the number of vertices of this m-triangulation of the surface. We get

N(S,m) = |F (T )|
(

(m− 1)(m− 2)

2

)
+ |E(T )|(m− 1)

So with the same principle as before, this gives a map

ΦT : XPGL(m,C)(S) −→ (C∗)N(S,m)

In the next section, we construct the inverse map Φ−1T . We start with coordinates in

(C∗)N(S,m) and we find an element of XPGL(m,C)(S).

4. Construction of a framed representation from coordinates

4.1. General Strategy. Starting from the triangulation, we construct a graph Γ embedded
into the surface by drawing small edges transversal to each side of the triangles and inside
each triangle connect the ends of edges pairwise by three more edges. Orient the small edges
in the triangles in counterclockwise direction and the long edges crossing the triangulation in
an arbitrary way (see Figure 2).

Figure 2. The oriented graph dual to the triangulation

To construct a framed representation, we assign to every oriented edge e ∈ Γ, an element
in PGL(m,C) that will depend on the coordinates associated to it.

For any long edge e ∈ Γ, we associate a matrix E({Xi,j}) which will depend on the edge
coordinates Xi,j with i + j = m of the corresponding edge of the triangulation. And to any
small edge e ∈ Γ, and we associate the matrix T ({Xi,j,k}) which will depend on triangle
coordinates of the triangle in which it stands.

Given this, for any closed path γ ∈ π1(S) on the surface, there is a path on Γ homotopic
to it. So one can assign to γ an element of PGL(m,C) by multiplying the group elements
(or their inverse if the path goes along the edge against its orientation) assigned to the edges
followed by the path. When the matrices T and E are well constructed, this defines a framed
representation of the fundamental group of S, with the appropriate coordinates.
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The main idea is the following. Let t be a triangle with flags (A,B,C) at each of its
vertices and with invariants Xi,j,k. Then the matrix T (t) associated to this triangle will
correspond to the element of PGL(m,C) that will perform the cyclic permutation of the flags
(A,B,C) 7→ (B,C,A).

Similarly, if (A,B,C,D) is a quadruple of flags with coordinates Xi,j associated to the edge
(A,C). Then the matrix E(e) will correspond to the element of PGL(m,C) that sends (A,C)
to (C,A) and moreover sends B1 to D1.

We will see explicit constructions in the cases m = 2 and m = 3. The explicit construction
in the general case is a little more difficult to compute but follow the same principle.

4.2. The case m = 2. Let (A,B,C) be a triple of flags in C2 or equivalently, three points in
CP 1. For the matrix T , we take the element sending the triple (A,B,C) to (B,C,A), and
we can choose (A,B,C) to be (0,∞,−1) so that

T =

(
−1 −1
1 0

)
Now let (A,B,C,D) be a quadruple of points such that the coordinates associated to the

edge AC is equal to z ∈ C∗. For convenience, we may take (A,B,C,D) = (0,−1,∞, z). Now
the matrix E(z) should be the element sending (0,∞) to (∞, 0) and moreover sending −1 to
z. This is

E(z) =

(
0 z
−1 0

)
This will gives the representation of π1(S).
To recover the framing over holes, notice that for any coordinate z a product of the form

E(z)T is a lower-triangular matrix (while E(z)T−1 is upper lower triangular. When following
a path around the boundary we get only one type of product, because we always turn right
(resp. left), and hence only get T (resp. T−1) in the formulas. So the monodromy ρ(Cj) is
upper-triangular (or lower-triangular), which gives a preferred eigendirection for each bound-
ary, and hence an invariant flag.

4.3. The case m=3. Let A,B,C be a triple of flag in C3, with triple ratio r3(A,B,C) = X.
We want to construct an element g that will send (A,B,C) on (B,C,A).

By the transitivity of the G-action on couple of flags, we can assume without loss of
generality that we have a basis (e1, e2, e3) such that :

A1 = e1, A2 = e1 ⊕ e2, C1 = e3, C2 = e3 ⊕ e2
and moreover such that

B1 = e1 − e2 + e3

In this case, a linear form generating B2 is given by Xe∗1 + (1 +X)e∗2 + e∗3. So the desired
matrix in the basis (e1, e2, e3) is given by :

T (X) =

 0 0 1
0 −1 −1
X 1 +X 1


Now let A,B,C,D be four flags in C3 such that the invariant associated to the edge AC

are Z and W . Again, we can assume that we have a basis such that A and C are the standard
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flags (e1, e1⊕ e2) and (e3, e3⊕ e2) respectively. And with B1 generated by e1− e2 + e3. Then
by definition of the two cross-ratios Z and W we have that the vector Z−1e1 + e2 + We3 is
a direction vector of D1. Then in this basis, the element sending (A,C) to (C,A) and B1 to
D1 is given by

E(Z,W ) =

 0 0 Z−1

0 −1 0
W 0 0


Remark 4.1. The general case is obtained by the same principle. However the matrices and
their computations are a little too long to be included in these notes. The interested reader
can find all the details in [1] 9.8.

5. Positive Representations

We now have all the tools to define the set of positive representations as a subset of the
space of framed representations.

5.1. Positive part of the moduli space. The coordinates constructed depend on the cho-
sen triangulation. An important thing is to understand how these coordinates change when
we choose a different triangulation of the surface S. A classical result states that two trian-
gulation are related by a sequence of flips. Hence we need to understand what happens to
the coordinates when we perform a flip along an edge of a triangulation.

In the case m = 2. It is an easy exercise to recover the following formulas in Figure 3.

Figure 3. Change of coordinates after a flip

5.1.1. Cluster mutations. There is a simple interpretation of these coordinate changes in terms
of cluster algebra. From a triangulation of the surface S, we can define an oriented graph (a
quiver) associated to it (see Fig. 4). Flipping along an arc of the triangulation is equivalent
to a performing a mutation of the quiver along a vertex. Such mutation are defined for any
quiver as follows :

Let Q be a quiver and k one of its vertex, the mutated quiver µk(Q) is obtained by
performing the three following steps :

(1) For each path of length two of the form i −→ k −→ j, add an arrow i −→ j
(2) Reverse each arrow incident to the vertex k.
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(3) Erase any 2-cycles that could have been created by previous steps.

The new coordinates are given by the so-called mutations formulas, which were discovered
by Fomin and Zelevinsky in a much broader context, and depend only on the quiver. If
(x1, . . . , xn) are the coordinates associated to each vertex of the quiver Q. Let ε(i, j) be the
number of oriented arrows between the vertex i and j. Then the new coordinates (x′1, . . . , x

′
n)

of the quiver µk(Q) are given by

x′j =


1

xj
if j = k,

xj(1 + xk)
ε(j,k) if ε(j, k) ≥ 0,

xj(1 + x−1k )ε(j,k) if ε(j, k) < 0

For a detailed exposition of the relation between cluster algebras and triangulations of
hyperbolic surfaces, one should refer to the article [4] of Fomin, Shapiro and Thurston.

5.1.2. Flips as sequence of mutations. In the general case, the explicit formulas for the change
of coordinates after a flip could be computed directly but would be quite heavy. However, it
is again possible to interpret these changes in terms of cluster mutation. We can associate a
quiver to any m-triangulation of the surface as indicated in the figure 4. In this case, changing
the triangulation is equivalent to a particular sequence of quiver mutations, and the change
of coordinates corresponds to the associated cluster mutations (see Chapter 10 of [1]).

Figure 4. Quiver associated to a triangulation and to an m-triangulation of
the surface

We notice that the formulas for cluster mutations are subtraction-free. Hence, any change
of triangulation gives a subtraction-free change of coordinates. This defines a positive atlas on
the space of framed structure (the actual definition of a positive atlas is not needed). Hence,
it is clear that if a framed representation has positive coordinates in a given triangulation,
then it will have positive coordinates with respect to any triangulation. This allows us to
define

Definition 5.1. A framed representation is said to be positive if its coordinates with respect
to one (and hence any) triangulation are all real positive.

The set of positive framed representation is denoted X+
G(S).

A positive representation is just the image of a positive framed representation through the
forgetful map XG(S)→ RG(S).
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In the next two paragraphs, we will give sketches of proofs of the fundamental properties
of positive representations. Namely that they are faithful and discrete.

5.2. Totally positive matrices and faithfulness of positive representations.

Proposition 5.2. Let [ρ] be a positive framed representation. Then the corresponding rep-
resentation ρ is faithful. Moreover, for any element γ ∈ π1(S) which is non-trivial and
non-boundary, the element ρ(γ) is positive hyperbolic.

To prove this proposition, we must look at the construction of the framed structure from
the coordinates. Let γ be a non-trivial non-boundary loop. Then the element ρ(γ) is of the
form

ρ(γ) = E(e1)(T (t1))
ε1E(e2)(T (t2))

ε2 · · ·E(ep)(T (tp))
εp

Suppose all the coordinates are positive. Then we notice that any matrix of the form
E(e)T (t) (resp. E(e)(T (t))−1) will be a totally positive upper-triangular matrix (resp. totally
positive lower triangular matrix). The product of totally positive matrices is a totally positive
matrix. And totally positive matrices have the property to have real, positive and distinct
eigenvalues. Hence, ρ(γ) is positive hyperbolic. The faithfulness is easily deduced from that.

5.3. Farey set and discreteness. To prove discreteness, we need to introduce a new object.

Definition 5.3. The Farey set of the surface S, denoted F∞(S) is a cyclic π1(S)-set defined
as follows.

Shrink the holes of S to punctures and lift to the universal cover, which is an open disc.
The set F∞(S) is the set of lifts of punctures which is a countable subset on the boundary of
the disc. The group π1(S) acts naturally by deck transformation, and the cyclic structure is
given by the cyclic structure on the boundary of the disc.

We can defined framed representations using only maps from the Farey set to the flag variety
as follows as there is a natural bijection between XPGL(m,C)(S) and the set of ρ-equivariant
maps

βρ : F∞(S) −→ Flag(Cm)

modulo conjugation by PGL(m,C).

Definition 5.4. A triplet of flags (A,B,C) is positive if it is equivalent (modulo the action
of PGL(m,C)) to a triple (F+, F−, u · F−) where F+ and F− are the standard flag and u is
a totally positive upper triangular matrix.

A configuration of flag (F1, . . . , Fn) is positive if any oriented triplet of flag is positive.

If [ρ] is a positive framed representation, then the map βρ takes values in Flag(Rm) and is
a positive map in the following sense : for any finite cyclic subset (x1, . . . , xk) ∈ F∞(S), the
configuration of flags (β(x1), . . . , β(xn)) is positive.

Proposition 5.5. We have an identification of X+
PGL(m,C)(S) and the set of (ρ, β) where ρ is

a representation and β : F∞(S)→ Flag(Rm) is a positive (π1(s), ρ)-equivariant map, modulo
conjugation.

This characterization of positive representation can be extended to surfaces without bound-
aries. In this case, there are no positive structure or coordinates but the properties of positive
representations remain.

The identification also allows us to prove the following theorem
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Theorem 5.6. Positive representations are discrete.

Proof. Let ρ be a positive representation. Let (a, b, c) ∈ F∞(S) be an ideal triangle of the
triangulation of S. The flag β(b) belongs to the set

D− = {F ∈ Flag(Rm)|(β(a), F, β(c)) is a positive configuration of flags

This set is open and disjoint from

D+ = {F ∈ Flag(Rm)|(β(a), β(c), F ) is a positive configuration of flags

Hence, there exist an open neighborhood O ⊂ PSL(m,R) such that for all g ∈ O, we have
g · β(b) /∈ D+.

Now let γ ∈ π1(S) and suppose that the image b′ = γ · b is contained in the segment
(a, c) ∈ S1. As βρ is a positive map, the quadruple of flags (β(a), β(b), β(c), ρ(γ)β(b)) is
positive. We deduce easily that ρ(γ) /∈ O. �
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Abstract

These are some brief notes on surface groups actions on complex
hyperbolic space, mainly work of Domingo Toledo, and generaliza-
tions.

1 Hyperbolic space

We begin with motivation from hyperbolic space. First, the definition
most useful to our generalization. Let q be the quadratic form on
Rn+1 given by

q(α1, . . . , αn+1) = α2
1 + · · ·+ α2

n − α2
n+1.

The associated symmetric matrix is

B = diag(1, . . . , 1,−1),

and we also use B to denote the associated symmetric bilinear form
on Rn+1. The Klein model of hyperbolic space Hn is then

Pn =
{

lines ` ⊂ Rn+1 : q|` is negative
}
⊂ RPn.

The metric1 is

d(x, y) = 2cosh−1

(
B(u, v)√
q(u)q(v)

)
,

where u, v ∈ Rn+1 are vectors representing the lines x, y ∈ RPn. No-
tice that q(u), q(v) < 0, but the square root is real.

1The factor of 2 makes the curvature −1.
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Exercise 1. Show that d is well-defined.

Exercise 2. Identify Pn with the unit ball and upper half space models.

Exercise 3. Show that the ideal boundary of Pn is the set of q-isotropic
lines, {` ⊂ Rn+1 : q|` = 0}.
Exercise 4. Show that the (orientation-preserving) isometry group of
Pn is exactly PO0(n, 1), the connected component of 1 in the group
of projective transformations of Rn+1 that fix q.

Exercise 5. When is PO(n, 1) connected?

Now, we consider a (closed) surface group Σ (of genus g ≥ 2)
and homomorphisms Σ → PO0(n, 1). We start with the case n = 2.
Fix a hyperbolic structure, i.e., a discrete and faithful representation
ρ0 : Σ → PO0(2, 1), and let S = H2 /ρ0(Σ). The following exercise
(see [6]) is important motivations for our generalizations to complex
hyperbolic space.

Exercise 6. Given ρ : Σ→ PO0(2, 1), build a ρ-equivariant H2-bundle
Eρ over S with fiber H2 with the following property. Let volρ be
the PO0(2, 1)-invariant extension of the volume form on H2 to Eρ by
pushing it along fibers. Then given any section σ of Eρ the number

vol(ρ) =
∫
S
σ∗ volρ

is independent of σ.

In this thesis [5], Goldman showed that vol(ρ) is related to the
Euler number of a certain bundle. Using this, he proved the following.

Theorem 1. Let Σ be the fundamental group of a closed surface S of
genus g ≥ 2, and ρ : Σ→ PO0(2, 1) any representation. Then

1. vol(ρ) ∈ 2πZ;

2. | vol(ρ)| ≤ 2π(g − 1);

3. | vol(ρ)| = 2π(g − 1) = vol(S) if and only if ρ is Fuchsian, i.e.,
ρ is the holonomy of a complete hyperbolic structure on S;

4. vol(ρ1) = vol(ρ2) if and only if ρ1 can be deformed into ρ2, that
is, if and only if ρ1 and ρ2 lie in the same connected component
of Hom(Σ,PO0(2, 1)).

This is a remarkable rigidity theorem, especially for something
as non-rigid as the fundamental group of a surface. The representa-
tions with | vol(ρ)| < 2π(g − 1) are very poorly understood. That the

2



extremal representations are the most rigid and geometrically signifi-
cant2 is a recurring theme in these notes.

Before complexifying, we consider Hn for higher n. To start, there
are some easy representations Σ→ PO0(n, 1), namely, representations
that factor

Σ→ SO0(2, 1)→ PO0(n, 1)

given by a totally geodesic embedding of H2 into Hn.

Exercise 7. Explain why H2 → Hn gives an embedding SO(2, 1) →
PO(n, 1) instead of PO(2, 1) → PO(n, 1). Hint: Think about how
the scalar matrices in O(n, 1) intersect, say, SO(2, 1). Explain this in
geometric terms via the normal bundle to H2 in Hn.

Exercise 8. When does a representation ρ : Σ → PO0(2, 1) lift to a
representation Σ→ SO(2, 1)?

If the map Σ→ SO0(2, 1) is (the lift of) a Fuchsian representation
of Σ, then we also call the representation Σ → PO0(n, 1) Fuchsian.
That is, Fuchsian representations of Σ into PO0(n, 1) are extensions
of Fuchsian representations into SO0(2, 1) via a totally geodesic em-
bedding H2 → H3.

Exercise 9. Describe the totally geodesic embeddings of Hm into Hn

(m < n) via subspaces of Rn+1 on which the restriction of q is positive
definite.

Fuchsian representations of Σ into PO0(n, 1) are, however, not
rigid for n ≥ 3. This is due to the existence of bending deformations.
Here is the sketch:

1. Write Σ as an amalgamated productG1∗〈γ〉G2 over Z by splitting
the surface S along an essential separating curve γ.

2. Take a Fuchsian representation ρ : Σ → SO0(2, 1) → PO0(n, 1)
with associated totally geodesic embedding f : H2 → Hn. Let
γ̃ ⊂ H2 be the axis of γ.

3. Let F be a fundamental domain for the action of Σ on H2 such
that γ̃ cuts F into two subdomains F1 and F2 associated with
each side of γ in S.

4. Let ft : H2 → Hn be a continuous family of totally geodesic
embeddings (t ∈ R) with f0 = f and ft(γ̃) = f0(γ̃).

2I think it’s fair to say that the Fuchsian representations into PO0(2, 1) are the most
significant representations of Σ.
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Figure 1: Local picture of a bending with γ̃ at the crease, F1 to the left, and
F2 to the right. It is from the wikipedia.com page on origami folds. (Ignore the
arrows.)

5. Use f(F1) and ft(F2) to define a one-parameter family ρt of rep-
resentations Σ→ PO0(n, 1). By letting G1 act with fundamental
domain3 F1 and G2 with fundamental domain F2. This defines
representations Gj → SO0(2, 1)→ PO0(n, 1).

6. By the universal property of amalgamated products, the repre-
sentations Gj → PO0(n, 1), which agree on γ, extend to a unique
homomorphism ρt : Σ→ PO0(n, 1).

Exercise 10. Prove that, for t sufficiently small, ρt is discrete, faithful
and, most importantly, not Fuchsian. Hint: Show that the Zariski
closure of ρt(Σ) is bigger than SO0(2, 1).

The important thing to take from this is that Fuchsian represen-
tations are highly non-rigid. In other words, one can easily deform
Fuchsian representations into non-Fuchsian representations.
Exercise 11. Describe these deformations in terms of conjugation of
ρ(G2) by the centralizer of ρ(γ) inside PO0(n, 1).

2 Complex hyperbolic space

The following is the complexification of the Klein model described
above. Also see [7]. Let h be the hermitian form on Cn+1 given by

h(α1, . . . , αn+1) = |α1|2 + · · ·+ |αn|2 − |αn+1|2.

The associated hermitian matrix is

B = diag(1, . . . , 1,−1),

and we also use B to denote the associated sesquilinear form on Cn+1.
The Klein model of complex hyperbolic space Hn

C is then

CPn =
{

complex lines ` ⊂ Cn+1 : h|` is negative
}
⊂ CPn.

3These are actually convex cores for fundamental domains.
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The metric is

d(x, y) = 2cosh−1

(
B(u, v)√
h(u)h(v)

)
,

where u, v ∈ Cn+1 are vectors representing the lines x, y ∈ CPn.

Exercise 12. Take real parts and show that there is a totally geodesic
embedding Hm → Hn

C for all m < n. Hint: Prove that your map
Hm → Hn

C is totally geodesic by showing that it is the fixed point set
of an involution.

Exercise 13. Show that CPn is holomorphically equivalent to the unit
ball in Cn. Conclude that H1

C is the Poincaré disk model of H2.

Exercise 14. Show that the ideal boundary of CPn is the set of h-
isotropic lines, {` ⊂ Cn+1 : h|` = 0}.
Exercise 15. Show that the (holomorphic) isometry group of CPn is
exactly PU(n, 1), the group of projective transformations of Cn+1 that
fix h. What is the full isometry group?

Exercise 16. For n = 2, show that the ideal boundary is the one-point
compactification of the 3-dimensional homogeneous space Nil. (Hint:
Show that the stabilizer of a point on the boundary has a natural
identification with Nil.)

Exercise 17. Show that the totally geodesic subspaces of Hn
C are either

Hm (m ≤ n) or Hm
C (m < n).

The most important thing to take away from the above is that
there are two types of totally geodesic embedding H2 → Hn

C. First
are the R-Fuchsian embeddings, which come from 3-dimensional real
subspaces of Cn+1 on which h defines a quadratic form of signature
(2, 1). Second are the C-Fuchsian representations, which come from
2-dimensional complex subspaces of Cn+1 on which h has signature
(1, 1); these are associated with holomorphic totally geodesic embed-
dings of the Poincaré disk into Hn

C.

Exercise 18. Show that R-Fuchsian representations of a closed surface
group Σ into Isom(Hn

C) are not rigid for n ≥ 3. Hint: Use Hn.

Exercise 19. Show that two copies of H1
C inside Hn

C are either dis-
joint or intersect in a single point. Use this to explain why there is
not version of the bending trick from §1 for C-Fuchsian representa-
tions. Hint: The intersection is (1) totally geodesic and (2) a complex
analytic subspace.
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One can also show that R-Fuchsian representations are not rigid
when n = 2, but that takes some more work [9]. We will see in §4
that C-Fuchsian representations are indeed rigid. In fact, they satisfy
extremal properties for the Toledo invariant, and are analogous to the
Fuchsian representations in Theorem 1.

3 The Gromov Norm

Before we define the Toledo invariant, we need the Gromov norm.
This will give us the bounded cohomology class that leads to our
replacement for vol(ρ) in §1. You should know something about this
anyways. See [8] for tons more. We begin with the treatment of [3].

Let X be a topological space. For a singular chain z =
∑
aiσi ∈

C∗(X), the L1 norm is given by ‖z‖1 =
∑
|ai|. We then have a pseudo-

norm on H∗(X,R) (here, a map H∗(X,R) → R+ ∪ {0} satisfying the
usual properties) by

‖x‖1 = inf{‖z‖1 : z a chain representing x}.

Similarly, if c ∈ C∗(X) is a singular cochain, we have the sup-norm

‖c‖∞ = sup{|c(σ)| : σ a (singular) simplex on T}.

Then, for a class α ∈ H∗(X,R), we obtain a pseudo-norm (here, a
map H∗(X,R)→ R ∪ {∞} satisfying the usual properties) by

‖α‖∞ = inf{‖c‖∞ : c a cochain representing α}.

We leave some basic but fundamental properties as exercises.

Exercise 20. For all x ∈ H∗(X,R) and α ∈ H∗(X,R),

|α(x)| ≤ ‖x‖1‖α‖∞.

Exercise 21. If f : X → Y is continuous, then ‖f∗α‖∞ ≤ ‖α‖∞ for
all α ∈ H∗(Y,R) and ‖f∗x‖1 ≤ ‖x‖1 for all x ∈ H∗(X,R).

Exercise 22. If X is a metric space of nonpositive curvature, we need
only consider geodesic simplices (i.e., simplices with geodesic edges).

Of fundamental importance for us is the following fact, proved in
[8].

Proposition 2. Let [S] be the fundamental class of a closed Riemann
surface S of genus g ≥ 2. Then ‖[S]‖1 = 4(g − 1) = −2χ(S).
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Proof. Choose a hyperbolic metric on S and represent [S] as
∑
riσi,

where σi is a geodesic triangle on S. By Gauss–Bonnet,∑
ri vol(σi) = −2πχ(S).

Since all triangles have area at most π, we get

2π|χ(S)| ≤
∑
|ri|π,

so ‖[S]‖1 ≥ 2|χ(S)|.
It remains to show that ‖[S]‖1 ≤ 2|χ(S)|. Choose the hyperbolic

metric associated with the hyperbolic 2g-gon. We can then triangulate
S by 4g geodesic triangles, so ‖[S]‖1 ≤ 2|χ(S)| + 2. However, we
can apply this same triangulation trick to a k-fold covering, which
represents k[S], i.e., the pullback to S of the fundamental class of the
covering, by 2k|χ(S)|+ 2 triangles. Thus

‖k[S]‖1 ≤ 2k|χ(S)|+ 2

which implies that

‖[S]‖1 ≤ 2|χ(S)|+ 2
k
.

As k → ∞, we get ‖[S]‖1 ≤ 2|χ(S)|, and this proves the proposition.

4 The Toledo Invariant

For hyperbolic Riemann surfaces, there is a PO0(2, 1)-invariant 2-
form ω on H2 that is a Kähler form. For any Riemann surface S =
Γ\H2, the volume form on S is (up to a constant) the projection
ωS ∈ H2(S,R) of ω to S. Similarly, the metric on Hn

C is associated
with a PU(n, 1)-invariant 2-form ω on Hn

C. Given any closed complex
hyperbolic n-manifold M = Γ\Hn

C, the projection ωM ∈ H2(M,R)
is a nontrivial 2-form such that ωnM ∈ H2n(M,R) is a multiple of the
volume form; in particular, it is nontrivial.

Let ρ : Σ→ PU(n, 1) be a representation. We can then define a ρ-
equivariant continuous map f : H2 → Hn

C using the ρ-orbit of a point
along with negative curvature. We then define the Toledo invariant

τ(ρ) =
∫
S
f∗ω.
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Exercise 23. Show that τ(ρ) is independent of the choice of f . Hint:
Think about the associated bundle and Exercise 6.

We then have the following fundamental result, due to Toledo.

Theorem 3 (Toledo [10]). Let Σ be a closed surface group of genus
g ≥ 2 and ρ : Σ→ PU(n, 1) be a representation. Then

|τ(ρ)| ≤ 2|χ(S)|.

Sketch of proof. We give the proof from [3]. The original proof uses
harmonic maps and the so-called Bochner method.

The first step is to prove that
∣∣∫

∆ ω
∣∣ ≤ π for any triangle ∆ in Hn

C.
One difficulty worthy of mention is that Hn

C has variable curvature, so
there is a nontrivial moduli space of PU(n, 1)-isomorphism classes of
triangles. The result is relatively clear when ∆ is a geodesic triangle
in a holomorphically embedded H2 ⊂ Hn

C. The key is proving that
this is the extremal case4.

It follows that ‖f∗ω‖∞ ≤ π. From the above properties of the
Gromov norm,

|τ(ρ)| = |f∗(ω)([S])| ≤ ‖f∗ω‖∞‖S‖1 ≤ 2|χ(S)|,

which proves the theorem.

Theorem 4 (Toledo [11]). Let Σ be a closed surface group of genus
g ≥ 2 and ρ : Σ→ PU(n, 1) a representation. Then |τ(ρ)| = 2|χ(S)| if
and only if ρ is Fuchsian with respect to a holomorphic totally geodesic
embedding H2 = H1

C → Hn
C.

Sketch of proof. The key point is proving that ρ(Σ) fixes such a totally
geodesic subspace. That ρ is Fuchsian basically follows from Theorem
1 along with properties of the Gromov norm. Using some technical
estimates along with the strict negative curvature of Hn

C, one obtains
a measurable mapping dρ : ∂H2 → ∂Hn

C. One then proves that if
∆ is a (possibly ideal) triangle in Hn

C with
∫

∆ ω = π, then ∆ is an
ideal triangle in H1

C ⊂ Hn
C. Applying this to arbitrary triples of points

on dρ(∂H2) shows that almost every triple of points lie on the ideal
boundary of a fixed H1

C ⊂ Hn
C. This line is ρ(Σ)-invariant, which gives

the theorem.
4For example, if ∆ is a triangle in a ‘real’ totally geodesic H2 → Hn

C, then ω|∆ ≡ 0,
so the integral is trivial. In a certain sense, all other cases interpolate between these two
extremes.
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Remark. The basic idea of the proof is related to certain proofs of
many rigidity theorems, e.g., Mostow rigidity, in that the important
technical step is producing a measurable mapping of ideal boundaries
that satisfies nice properties.

5 Generalizations

Over the last ten or fifteen years, there has been a great deal of
progress on various generalizations of Toledo’s result. First, instead
of a Riemann surface, i.e., a complex hyperbolic 1-manifold, we can
try to generalize Toledo’s results to higher-dimensional complex hy-
perbolic manifolds. One such result from the same era as Toledo’s
work was the following rigidity theorem of Goldman–Millson [4].

Theorem 5. For any 1 < m ≤ n, let Γ < SU(n − 1, 1) be a torsion
free lattice and ρ : Γ → SU(n − 1, 1) → PU(n, 1) be a representation
given by factoring the natural representation of Γ into SU(n − 1, 1)
into PU(n, 1) via a totally geodesic embedding Hn−1

C → Hn
C. Then Γ

is infinitesimally rigid, i.e., any small deformation of Γ also stabilizes
a totally geodesic Hn−1

C ⊂ Hn
C.

In particular, the ‘Fuchsian’ representations of Γ form a connected
component of Hom(Γ,PU(n, 1)). Soon thereafter, Corlette proved the
following generalization [2].

Theorem 6. Let M be a compact complex hyperbolic manifold of
(complex) dimension m and fundamental group Γ. If n > m and
ρ : Γ → SU(n, 1) is a representation with vol(ρ) = vol(M), then ρ(Γ)
stabilizes a totally geodesic Hm

C ⊂ Hn
C.

Here, vol(ρ) is the pullback of ωm to H2m(M,R), where ω is the
Kähler class on Hn

C, so vol(ρ) generalizes the Toledo invariant. Since
vol(ρ) varies among a discrete set (e.g., by relation with a characteris-
tic class), this is a strong generalization of the Goldman–Millson result
stated above. In particular, the infinitesimal rigidity of Goldman–
Millson, analogously to the case of surface group representations,
passes to the entire connected component of the ‘Fuchsian’ represen-
tations.

Returning to surface groups, there are two types of generalizations.
First, one can allow noncompact surfaces, where similar rigidity re-
sults follow once one insists that certain regularity of the PU(n, 1)
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representation (these are so-called maximal representations). Instead,
one can replace Hn

C with some other hermitian symmetric space, i.e.,
a symmetric space with a ‘nice’ complex structure. To start down
either of these paths, see [1].
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Anosov representations in AdS geometry

July 4, 2013

The point of this note is to summarize the work of T. Barbot and Q.
Merigot on Anosov representations in anti de Sitter geometry, published as
one joint paper [BM], but available on arXiv as two separate papers [Mer]
and [Ba1]. Combined, the work of Barbot and Merigot shows that when the
target group is SO(2, n), the notion of Anosov representation (Labourie [La])
coincides exactly with the notion of quasifuchsian: here the natural space on
which SO(2, n) acts is the Einstein universe Einn−1,1 = Einn, a conformal
Lorentzian manifold which should be thought of as a Lorentzian analogue
of the conformal Riemannian sphere. SO(2, n) also acts on the n+ 1 dimen-
sional anti de Sitter space AdSn,1 = AdSn+1, which is a Lorentzian model
space of constant negative curvature, a Lorentzian analogue of hyperbolic
space. The Einstein space Einn−1,1 is the ideal boundary of AdSn,1, in the
same way that the conformal sphere is the boundary of hyperbolic space.

Let Γ be a cocompact lattice is SO(n, 1). Via the inclusion SO(n, 1) ↪→
SO(n, 2) we obtain a Fuchsian representation of Γ. This representation
preserves a totally geodesic copy of Hn inside AdSn,1; it also preserves the
boundary ∂Hn ⊂ Einn,1, which is a smooth space-like (n − 1)-sphere in
Einn−1,1. A representation ρ : Γ→ SO(n, 2) is quasi-Fuchsian if ρ preserves
an embedded, acausal, n− 1 sphere Λ (the limit set) in Einn−1,1. When we
say that a representation ρ : Γ→ SO(n, 2) is Anosov, we will mean Anosov
in the context of the action of SO(n, 2) on the subspace Y ⊂ Einn × Einn

of pairs of points (v, w) that are acausal, meaning there exists a space-like
path in (the universal cover) of Einn, connecting v to w. The key connection
between the notion of Anosov and that of quasi-Fuchsian comes from AdS
geometry: The limit set Λ ⊂ Ein of a quasi-Fuchsian representation ρ is
the boundary of a domain in AdS whose quotient under ρ is a globally
hyperbolic Cauchy compact (GHC) AdS manifold. The geodesic flow on the
non-wandering space-like unit tangent bundle in this manifold turns out to
be dynamically the same as the geodesic flow on Γ\T 1Hn; this allows us to
construct the Anosov map from T 1(Γ\Hn) to Y.
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Finally, we mention one newer result of Barbot [Ba2], which we will not
discuss here: All deformations of the Fuchsian representation of Γ in SO(2, n)
are quasi-Fuchsian. In other words the component of the Fuchsian represen-
tation consists entirely of Anosov representations. This is well-known due
to Mess in dimension three.

Before starting, a disclaimer: I have left out many of the details (and
perhaps even some important ones!). I only intend to give a vague idea of
the arguments.

1 Definitions of the basic objects

For background on AdS geometry, see [BB] or my thesis (mostly dimension
3). For a nice introduction to the 2 + 1 dimensional Einstein space, see
[BCD+]

Consider the quadratic form

q2,n(u, v, x1, . . . , xn) = −u2 − v2 + x21 + · · ·+ x2n

of signature (n, 2) on Rn+2 = R2,n. Let 〈·|·〉 denote the associated inner
porduct. The anti de Sitter space AdSn+1 = AdSn,1 is defined to be the hy-
perboloid {q2,n = −1} endowed with the metric coming from the restriction
of q2,n. This metric is Lorentzian, meaning that the inner product on each
tangent space has signature (1, n) (one negative eigenvalue and n positive
eigenvalues).

The Einstein universe Einn−1,1 = Einn is the positive projectivization of
the light cone with respect to q2,n:

Einn−1,1 = {q2,n(u, v,x) = 0 : x 6= 0}/R+.

It is topologically S1 × Sn; the diffeomorphism is given by

(u, v,x) 7→
(

(u, v)√
u2 + v2

,
x

‖x||

)
,

where ‖ · ‖ denotes the usual Euclidean norm.
The group SO(2, n) acts on both AdSn,1 and Einn−1,1. In the case of

AdS, its clear that this action is by isometries. Under the identification
Einn,1 = S1 × Sn above, the Lorentzian metric −dθ2 + ds2 is preserved, up
to conformal factor, by SO(2, n). This conformal metric is induced by q2,n.

Let S : Rn+2 \ {0} → Sn+1 denote the quotient by the positive reals
R+. Then S is injective on both AdSn,1 and Einn−1,1 and Merigot denotes
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the images ADSn,1 = S(AdSn,1) and ∂ADSn,1 = S(Einn−1,1). The image of
Einstein space is precisely the boundary of the image of AdS. This allows
us to think of Ein as an ideal boundary of AdS in the same way that the
sphere is the ideal boundary of Hn. The (pushforward of the) metrics work
well together: If pn is a sequence of points in ADS approaching the point p∞
in ∂ADS, then the conformal class of the AdS metric at pn converges to the
(conformal class of the) Einstein metric at p∞. One other important feature
that can be seen directly in this model is that every space-like geodesic
in ADS has two distinct end-points on ∂ADS. Let E1AdSn,1 denote the
unit space-like tangent bundle of AdS, consisting of all tangent vectors with
norm-squared +1. Then, define the two maps `+, `− : E1AdSn,1 → Einn−1,1

taking a tangent vector to its forward and backward endpoints (respectively)
under the geodesic flow. These will be useful later. Henceforth, we will not
distinguish between the two models ADS and AdS, and we will only use the
notation AdS and Ein. Note that some (including me) prefer to take AdS
to be the quotient by the antipodal map of the model defined here.

1.1 Causality

Let M be a manifold with Lorentzian metric g, and let v 6= 0 be a vector
tangent to M at some point. If g(v, v) < 0, then v is called time-like, if
g(v, v) = 0 then v is called light-like and if g(v, v) > 0, then v is called
space-like. This terminology comes from physics (Einstein): paths with
time-like tangents describe the motion of particles; a geodesic with light-like
tangent describes a photon. A hyper-surface with space-like tangents is a
copy of space in the space-time, you could think of it as the slice t = 0,
although in general such a time function t might not extend to the entire
space-time M . The notion of globally hyperbolic means roughly that there
is a global time function t on M . Then, the level sets of t are space-like
hypersurfaces.

In any tangent space, the light-like vectors form a cone which divides
the time-like vectors into two components. We choose one component to
be called future and the other to be called past. This choice can be made
consistently over small patches of the manifold. The manifold is called time-
orientable if future/past can be chosen consistently over the entire manifold.
Even a time-orientable space-time may not have a well-defined notion of
future/past for pairs of points. For example, both Ein and AdS contain
closed time-like curves, so future/past only makes sense in the universal
cover.

Since we wish to deal with rough sets (like limit sets), we need to extend
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the notion of time-like, space-like, light-like, to curves which are not smooth.
Causality notions only make sense in the universal cover; when applied to
a manifold which is not simply connected, lift everything to the universal
cover before applying the definitions. A curve c is called (future) causal if
for every a > b, c(a) is in the future of c(b), meaning that there exists a
smooth curve from c(a) to c(b) with (future directed) time-like or light-like
tangents. A set Λ is called achronal if for any two points of Λ there is no
time-like curve separating those points. A set Λ is acausal if for any two
points of Λ, there is no causal curve separating those points.

In our context, Λ ⊂ Einn will be the image of an n − 1-sphere under
some injective map. In this case:

Lemma 1. Λ is acausal if and only if for all p, q ∈ Λ, the pair (p, q) ∈ Y.

This is not hard to prove. Let ÃdS
n,1

denote the universal cover, and let

Ẽin
n−1,1

denote the boundary of ÃdS (n = 2 is slightly annoying here since

Ẽin is not the universal cover of Ein so lets ignore this case here). Let Λ̃ be a

lift of Λ to Ẽin. If some pair (p, q) /∈ Y, then acausal fails: the span of p and
q gives a light-like geodesic in Einn passing through p and q; this light-like
geodesic generates π1Ein so any lifts p̃, q̃ to Ẽin are connected by the lift
of the light-like geodesic. On the other hand, if all pairs of points p, q ∈ Λ
satisfy (p, q) ∈ Y, then we show Λ is acausal as follows. Let p, q ∈ Λ. By the
assumption (p, q) ∈ Y, span{p, q} is a (1, 1) plane which descends to a space-
like geodesic in AdSn,1. This geodesic is contained in many totally geodesic
hyperbolic planes. To find one, pick a positive vector v in span{p, q}⊥; then
span(p, q, v) has signature (1, 2) and descends to a hyperbolic plane H in
AdSn,1. The boundary ∂H is a space-like curve in Einn passing through p
and q. Now let α be the loop gotten by traveling from p to q along some
path γ inside Λ and then traveling from q back to p along ∂H. Then a
homotopy αt from α to the constant loop can be constructed: αt is the loop
going from p to the point γ(t) (γ(0) = p, γ(1) = q) along γ and going back
to p along ∂Hγ(t) where Hγ(t) is a hyperbolic plane containing the geodesic
from p to γ(t) (chosen continuously in t; here we need that (p, γ(t)) ∈ Y) for

all t). Now lift Λ to Λ̃ ⊂ Ẽin (Λ is simply connected). Then the space-like
curve ∂H lifts to a curve, still spacelike, passing through the lifts of p and q
to Λ̃.
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2 Anosov representations are quasi-Fuchsian

Let P ⊂ SO(2, n) be the stabilizer of an isotropic line. Then, SO(2, n)/P =
Einn is Einstein space. The open orbit Y ⊂ Einn × Einn of the SO(2, n)
action is the subset of pairs of points in Einstein space which are acausally
related. These are exactly the pairs of endpoints of spacelike geodesics
in AdSn+1. We consider now P -Anosov (Merigot calls them Y-Anosov)
representations ρ : Γ → SO(2, n). Let us recall the definition (Labourie).
Consider the unit tangent bundle N of the compact hyperbolic manifold
Γ\Hn, as well as the flat Y-bundle Eρ over N associated to ρ:

Eρ = T 1Hn ×ρ Y.

Denote the geodesic flow on N by φt; the flow lifts to Eρ. Each factor of
Y determines a sub-bundle of TEρ: Let Es denote the span of the tangent
directions to the stable sub-manifold of the geodesic flow on N and the
tangent directions to the first Einn factor (see Spencer’s notes). Let Eu

denote the span of the tangent directions to the unstable manifold of the
geodesic flow on N and the tangent directions to the second Einn factor.
The tangent bundle of Eρ splits as

TEρ = ∆⊕ Es ⊕ Eu

where ∆ is the line bundle tangent to the flow φt.
Then ρ is P -Anosov (Y-Anosov) if there is a φt-invariant section s : N →

Eρ and there exists constants a, b > 0 such that:

• for any vector v in Es over a point p of s(T 1N), and for any t > 0:

‖dpφt(v)‖ ≤ be−at‖v‖

• for any vector v in Eu over a point p of s(T 1N), and for any t < 0:

‖dpφt(v)‖ ≤ beat‖v‖

where ‖ · ‖ is some Riemannian metric (since Γ is cocompact, this definition
is independent of the metric).

Both Merigot and Barbot use an alternate definition of Anosov (see
Merigot Remark 5.4):
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Remark 1 (Merigot Remark 5.4). The Anosov section s is really two ρ-
equivariant maps `+ρ , `

−
ρ : T 1Hn → Einn. An equivalent formulation of the

contraction properties is as follows: There exists a family of Riemannian
metrics g(x,v) depending continuously on (x, v) ∈ T 1Hn and defined in a
neighborhood of both `+ρ (x, v) and `−ρ (x, v) in Einn such that:

• The family is ρ-equivariant: Let w ∈ T`+ρ (x,v) or w ∈ T`−ρ (x,v). Then

gγ(x,v)(dρ(γ)w, dρ(γ)w) = g(x,v)(w,w)

• There exists a, b > 0, such that if w ∈ T`+ρ (x,v) and t > 0, then

gφ
t(x,v)(w,w) ≥ b−1 exp(at)g(x,v)(w,w)

or if w ∈ T`−ρ (x,v) and t > 0 then

gφ
t(x,v)(w,w) ≤ b exp(at)g(x,v)(w,w).

We use this second definition from now on, avoiding explicit reference to
the metrics g(x,v) whenever the intuition is clear.

We now summarize Merigot’s argument showing that Anosov representa-
tions (as above) are quasi-Fuchsian. This direction doesn’t actually involve
very much AdS geometry. In fact the following argument is very general,
and is covered in Spencer’s notes on the basics of Anosov representations.
We repeat it here in this context.

The Anosov section s is really two maps `+ρ , `
−
ρ : T 1Hn → Einn. Let

(x, v) ∈ N lie on the closed geodesic corresponding to γ ∈ Γ.

• Both `+ρ (x, v), `−ρ (x, v) must be fixed points of ρ(γ), and they must
be distinct and acausally related. It follows that ρ(γ) preserves the
space-like geodesic in AdSn+1 with endpoints `+ρ (x, v), `−ρ (x, v).

• It follows from the previous remark that `+ρ (x, v) is an attracting fixed
point of ρ(γ) and that `−ρ (x, v) is a repelling fixed point.

• A basic projective geometry argument implies that `+ρ (x, v) (respec-
tively `−ρ (x, v)) is the unique attracting (respectively repelling) fixed
point of ρ(γ).

Using these observations, Merigot proves

Proposition 2 (Merigot Prop 5.8). Let α : T 1Hn → T 1Hn be the map which
flips the direction of tangent vectors: α(x, v) = (x,−v). Then `+ρ = `−ρ ◦ α.
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The statement is true when (x, v) lies on a closed geodesic by the above
observations. The proposition then follows by density of closed geodesics.

Now, define Λ = `+ρ (N) = `−ρ (N). Since `+ρ (or `−ρ ) is flow invariant, we
can really think of it as an equivariant map ∂Hn → Einn since the value only
depends on the forward endpoint of the geodesic flow of (x, v). Thought of in
this way, we argue that `+ρ is injective and its image is acausal. For consider
two points (x, v) and (y, w) of T 1Hn with distinct (forward) endpoints on
∂Hn. There is a third unit tangent vector (z, u) whose forward endpoint is
the forward endpoint of (x, v) and whose backwards endpoint is the forward
endpoint of (y, w). Then, using the proposition:

`+ρ (x, v) = `+ρ (z, u)

`+ρ (y, w) = `+ρ (z,−u) = `−ρ (z, u).

Since (`+ρ (z, u), `−ρ (z, u)) ∈ Y it follows that `+ρ (x, v) and `+ρ (y, w) are distinct
and acausally related. This proves that Λ is an acausal embedded n − 1
sphere, and so ρ is quasi-Fuchsian.

3 Globally hyperbolic AdS space-times

Now to the converse result of Barbot, that quasi-Fuchsian representations
are Y-Anosov. We give only a vague summary. The strategy involves the
geometry of globally hyperbolic AdS space-times.

Consider an acausal subset Λ of Einn−1,1. Let E(Λ) denote the points of
AdSn,1 that can be joined to all points of Λ by a space-like geodesic. E(Λ) is
called the invisible set. It is open. Now, suppose ρ : Γ→ SO(2, n) is quasi-
Fuchsian and Λ is the acausal n − 1 sphere preserved by the image of ρ.
Then M = ρ(Γ)\E(Λ) is a globally hyperbolic maximal compact (GHMC)
AdS manifold: It is globally hyperbolic with compact space-like level sets,
and it is maximal with respect to inclusion (Mess). I won’t get into the
details here, but the assosiation (ρ,Λ) 7→M is a bijection (Mess [Mes]).

3.1 The unit tangent bundle

Consider the space like unit tangent bundle E1E(Λ). Define the non-wandering
set N (Λ) to be the subset of points (x, v) of E1E(Λ) such that the space-like
geodesic passing though x tangent to v has both endpoints in Λ; in other
words `+(x, v), `−(x, v) ∈ Λ. The non-wandering set is of course ρ invariant.
The basic idea is that N (Λ) gives the connection between the dynamics of
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the geodesic flow on Γ\Hn and the action of ρ(Γ) on Λ. Specifically, Barbot
proves:

Proposition 3 (Barbot Proposition 4.19). There is a ρ-equivairant homeo-
morphism f : T 1Hn → N (Λ) mapping orbits of the geodesic flow φt on T 1Hn

to orbits of the space-like geodesic flow φtN on N (Λ).

To prove this, the first step is to show the existence of a ρ-equivariant
homeomorphism j : ∂Hn → Λ. This involves some AdS geometry: the group
Γ is quasi-isometric to the convex hull Conv(Λ) of Λ in AdSn,1. Then both
T 1Hn and N (Λ) are R-bundles over ∂Hn×∂Hn \D ∼= Λ×Λ\D (where D is
the diagonal) and j×j gives an equivalence of the orbit spaces. Construction
of f is a standard exercise.

From the proposition, we get two flow invariant maps `+ρ , `
−
ρ : T 1Hn → Λ

defined by first applying f and then following the geodesic flow in N (Λ) for-
wards and backwards to Λ. These are of course ρ-equivariant. The focus
now is demonstrate the contraction properties of Remark 1 above. The
metric g(x,v) at (near) `+ρ (x, v) is defined as the visual metric from the point

x ∈ AdSn,1. To make it Riemannian, we use Wick rotation. Specifically,
there is a ρ-equivariant time-like vector field V defined in the convex core
Conv(Λ) (which is the projection of N (Λ) to AdS); One may define a Rie-
mannian metric on Conv(Λ) by using the AdS metric on the orthogonal to
V and then flipping the sign of 〈V, V 〉; projecting this metric (at x) onto
the boundary Einn gives a Riemannian metric in a neighborhood of `+ρ (x, v)
(in fact defined on the entire space-like visual “sphere” of x, a copy of de
Sitter space dSn in Einn centered around x). Some fiddling is needed to
make sure this is equivariant. Barbot shows that this metric satisfies the
contracting properties. A key step is to show that for a sequence of group
elements γn converging to a point in the Gromov boundary ∂Γ, the ele-
ments ρ(γn) ∈ SO(2, n) always have un-balanced distortion, meaning (most
of) Einstein space is pushed toward one attracting fixed point.
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CONVEX COCOMPACT GROUPS
IN REAL RANK ONE AND HIGHER

FANNY KASSEL

Notes for a talk at the GEAR workshop on Higher Teichmüller–Thurston Theory,
Northport, Maine, 23–30 June 2013

Let G be a real, connected, noncompact, semisimple, linear Lie group.
The goal of this talk is to recall the classical notion of a convex cocompact
subgroup of G when G has real rank 1 and to discuss possible generalizations
to higher real rank, following Kleiner–Leeb [KL2] and Quint [Q].

Acknowledgements. I would like to thank the GEAR Network and the orga-
nizers of the workshop for a very enjoyable and productive week.

1. Preliminary notation

In the whole talk, K denotes a maximal compact subgroup of G, so that
X = G/K is the Riemannian symmetric space of G, and A denotes a max-
imal split connected semisimple abelian subgroup of G such that the Car-
tan decomposition G = KAK holds; by definition, the real rank of G is
rankR(G) = dim(A). Consider the decomposition of the Lie algebra g of G
into joint eigenspaces for the adjoint action of A:

(1.1) g = (m + a) + n + n−,

where a is the Lie algebra of A, where m is the Lie algebra of the centralizer of
A inK, and where n (resp. n−) is the sum of the positive (resp. negative) root
spaces with respect to some fixed choice of positive restricted root system.
LetM be the centralizer of A in K, with Lie algebra m, and let N (resp. N−)
be the image of n (resp. n−) under the exponential map exp : g → G. The
group MA is the centralizer ZG(A) of A in G. The groups P := (MA) nN
and P− := (MA)nN− are opposite minimal parabolic subgroups of G, with
respective unipotent radicals N and N−.

Example 1.1. For G = SLm(R), we may take K to be SO(m) and A to be
the group of diagonal matrices in G with positive entries. The Lie algebra
g is the set of traceless m × m real matrices, a is the subset of diagonal
matrices, and m is trivial (G is split). With the usual choice of positive root
system, n (resp. n−) is the set of upper (resp. lower) triangular nilpotent
matrices.

n
a

n−

1
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Example 1.2. ForG = SO(p, q)0, the groupK is isomorphic to SO(p)×SO(q).
Suppose p ≤ q. If we see G as the subgroup of SLp+q(R) preserving the qua-
dratic form

2x1 xp+q + 2x2 xp+q−1 + · · ·+ 2xp xq+1 − x2
p+1 − x2

p+2 − · · · − x2
q ,

then we may take a to be the set of diagonal matrices

diag(t1, . . . , tp, 0, . . . , 0,−tp, . . . ,−t1)

with t1, . . . , tp ∈ R. In this case m is the set of block diagonal matrices
diag(0, D, 0) with D ∈ so(q − p), with the two 0 blocks of size p × p. With
the usual choice of positive restricted root system, n (resp. n−) consists of
strictly upper (resp. lower) triangular block matrices.

na

m

n−

2. Convex cocompactness in real rank 1

2.1. Definitions, examples, and characterizations. In this section we
assume that G has real rank 1. Recall the following classical definition.

Definition 2.1 (rankR(G) = 1). A discrete subgroup Γ ofG (or any injective
representation ρ : Γ0 → G of a discrete group Γ0 into G with image Γ) is said
to be convex cocompact if one of the following equivalent conditions holds:

(1) Γ preserves and acts cocompactly on some nonempty convex subset
C of X = G/K;

(2) Γ acts cocompactly on the closure FΓ of the union of the translation
axes of the hyperbolic elements of Γ in X (in other words, the closure
of the union of all closed geodesics is compact in Γ\X);

(3) the conservative set of the geodesic flow on the unit tangent bundle
T 1(Γ\X) is compact.

By definition, the conservative set of the geodesic flow (ϕt)t∈R is the clo-
sure of the set of vectors v ∈ T 1(Γ\X) such that ϕt(v) returns to a compact
subset of T 1(Γ\X) infinitely often.

Since rankR(G) = 1, the Riemannian symmetric space X is Gromov-
hyperbolic; its visual boundary identifies with G/P . Any nonempty, Γ-inva-
riant, closed, convex subset ofX must contain the convex hull Conv(ΛΓ) ⊂ X
of the limit set ΛΓ ⊂ G/P of Γ, hence (1) is equivalent to the fact that Γ
acts cocompactly on Conv(ΛΓ). The set FΓ is the union of all geodesics of X
with both endpoints in ΛΓ; it is contained in Conv(ΛΓ), so (1) immediately
implies (2). The following classical lemma (see [Gd, Lem. 4] for instance)
explains why (2) implies (1).
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Lemma 2.2. The set Conv(ΛΓ) is contained in a uniform neighborhood of
its subset FΓ.

Convex cocompact groups in real rank 1 include uniform lattices and
Schottky groups (with no parabolic element). Other interesting examples
are given by quasi-Fuchsian representations of surface groups into PSL2(C).

We shall recall a proof of the following well-known lemma.

Lemma 2.3. If rankR(G) = 1, then the following conditions are equivalent:
(i) Γ is convex cocompact,

(ii) Γ is finitely generated and quasi-isometrically embedded in G,
(iii) Γ is Gromov-hyperbolic and there exists a continuous, injective, and

Γ-equivariant map ξ : ∂∞Γ→ G/P = ∂∞X,
(iv) Γ is Gromov-hyperbolic and the natural inclusion of Γ in G is a P -

Anosov representation.

Recall that “Γ quasi-isometrically embedded in G” means that for some
(hence any) finite generating subset S of Γ and some (hence any) G-invariant
Riemannian metric dG on G, there exist c, C > 0 such that for any γ ∈ Γ,

dG(e, γ) ≥ c `S(γ)− C,

where `S : Γ→ N is the word length function with respect to S. We shall re-
call the definition of Anosov representations in Section 2.3 below. The implica-
tion (iv)⇒ (ii) actually holds when G has arbitrary real rank [GW, Th. 5.3].

A proof of Lemma 2.3 will be given in Section 2.4. We first recall an
interpretation of the homogeneous space G/MA.

2.2. The homogeneous space G/MA. When rankR(G) = 1, there are two
G-orbits in G/P ×G/P : a closed one, namely

Diag(G/P ×G/P ) = {(ξ, ξ) : ξ ∈ G/P},

and an open one, namely

(G/P )(2) = (G/P ×G/P ) r Diag(G/P ×G/P ),

which we shall denote by O. If we see G/P as the space of minimal para-
bolic subgroups of G, with the transitive action of G by conjugation, then
(P, P−) ∈ G/P ×G/P belongs to O; its stabilizer is P ∩P− = MA, hence O
identifies with G/MA. We can interpret O as the space of oriented geodesics
of X = G/K, with the two projections of O ⊂ G/P ×G/P onto G/P giving
the two endpoints in ∂∞X. This is known as the Hopf parameterization of
the space of oriented geodesics of X.

When G has arbitrary real rank, G/MA still identifies with the only open
G-orbit in G/P ×G/P ; there may be more than two G-orbits.

2.3. Anosov representations. In this section G can have any real rank.

2.3.1. Exponential expansion and contraction. We shall use the following
classical terminology. Let π : V → M be a vector bundle over a compact
manifoldM. For any m ∈M, choose a norm ‖ · ‖m on the fiber π−1(m) so
that the family (‖ · ‖m)m∈M is continuous.



CONVEX COCOMPACT GROUPS 4

Definition 2.4. A flow (ft)t∈R on V is said to exponentially expand (resp.
contract) V if there exist c, C > 0 such that

‖ft · v‖π(ft·v) ≥ C ec|t| ‖v‖π(v)

for all t ≥ 0 (resp. t ≤ 0) and all v ∈ V.

This does not depend on the choice of the continuous family (‖ · ‖m)m∈M,
by compactness ofM.

2.3.2. Anosov representations for fundamental groups of closed, negatively
curved manifolds. Let N be a closed, negatively curved, Riemannian man-
ifold, with universal covering Ñ and fundamental group Γ0. The geodesic
flow (ϕt)t∈R on the unit tangent bundle M := T 1(N ) is an Anosov flow :
there exists a (dϕt)t∈R-invariant splitting

(2.1) TM = D0 ⊕D+ ⊕D−

of the tangent bundle TM into subbundles such that D0 is tangent to the
flow and D+ (resp. D−) is exponentially expanded (resp. exponentially con-
tracted) by (dϕt)t∈R in the sense of Definition 2.4. The notion of Anosov
representation aims to generalize this idea to representations of Γ0 into G.
In order to define it, we first make a few remarks. Let ρ : Γ0 → G be a group
homomorphism.

• The group Γ0 acts on M̂ := T 1(Ñ ) by deck transformations. We denote
by M̂ ×ρ G/MA the quotient of M̂ ×G/MA by the diagonal action

γ · (m̂, gMA) =
(
γ · m̂, ρ(γ)gMA

)
of Γ0. It is a principal bundle overM with fiber G/MA.

• The geodesic flow on M̂, which we also denote by (ϕt)t∈R, lifts to a flow
(ψt)t∈R on M̂ ×G/MA which is trivial on the right factor:

ψt · (m̂, gMA) = (ϕt · m̂, gMA).

Since (ϕt)t∈R commutes with the action of Γ0 on M̂, the flow (ψt)t∈R de-
scends to a flow on M̂ ×ρ G/MA, still denoted (ψt)t∈R, which lifts (ϕt)t∈R.
• Recall from Section 2.2 that the homogeneous space G/MA identifies with
an open subset of G/P ×G/P . This product structure induces a G-invariant
splitting

T (G/MA) = E + ⊕ E −.

In turn, the G-invariant distributions E ± on G/MA determine distributions
F± ⊂ T (M̂ ×ρ G/MA) on M̂ ×ρ G/MA, which are preserved by the flow
(dψt)t∈R.

Definition 2.5 (Labourie [L]). A representation ρ ∈ Hom(Γ0, G) is P -Ano-
sov if there exists a continuous section s of the bundle M̂ ×ρ G/MA→M
which is compatible with the flows (ϕt)t∈R and (ψt)t∈R, in the sense that
s◦ϕt = ψt◦s for all t ∈ R, and such that s∗F+ (resp. s∗F−) is exponentially
expanded (resp. contracted) by (dψt)t∈R.
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Another way to say that s is compatible with the flows (ϕt)t∈R and (ψt)t∈R
is to say that it is flat along the flow lines of (ϕt)t∈R, for the flat connection
on the bundle M̂ ×ρ G/MA → M induced by the flat connection coming
from the product structure on M̂ ×G/MA→ M̂ .

2.3.3. An equivalent definition. A section s of the bundle M̂×ρG/MA→M
determines a unique ρ-equivariant map σ : M̂ → G/MA, and vice versa.
Therefore, Definition 2.5 can be reformulated as follows: a representation
ρ ∈ Hom(Γ0, G) is P -Anosov if and only if there exists a continuous, ρ-
equivariant map σ : M̂ → G/MA with the following properties:

• σ is invariant under (ϕt)t∈R,
• for some (hence any) continuous, ρ-equivariant family (‖ · ‖m̂)

m̂∈M̂,
where ‖·‖m̂ is a norm on Tσ(m̂)(G/MA), there exist c, C > 0 such that

(2.2) ‖w‖ϕt·m̂ ≥ C ec|t| ‖w‖m̂

for all m̂ ∈ M̂ and all (w, t) ∈ (E +
σ(m̂) × R+) ∪ (E −σ(m̂) × R−).

In this case, σ factors through the space M̂/(ϕt)t∈R of oriented geodesics
of Ñ and is unique: any γ ∈ Γ0r{e} has a unique attracting (resp. repelling)
fixed point ξ+

γ (resp. ξ−γ ) in G/P , and σ must send the oriented translation
axis of γ in Ñ to (ξ+

γ , ξ
−
γ ) ∈ G/MA.

2.3.4. A characterization in terms of roots. Here is an equivalent formulation
of (2.2) due to Guichard–Wienhard [GW], which we give in the special case
where rankR(G) = 1. Since A is contractible, by using a partition of unity we
can lift the continuous, ρ-equivariant map σ : M̂ → G/MA to a continuous,
ρ-equivariant map σ′ : M̂ → G/M ; any two such lifts differ by a bounded
amount in any G-invariant Riemannian metric on G/M . Note that A acts on
G/M by right multiplication (becauseM and A commute). For any m̂ ∈ M̂,
there exists a continuous map t 7→ am̂,t ∈ A such that

σ′(ϕt · m̂) = σ′(m̂) am̂,t

for all t ∈ R. The tangent space T (G/M) admits a natural right-A-invariant
splitting

T (G/M) = G 0 ⊕ G + ⊕ G−

into subbundles such that the image of G 0 (resp. G +, resp. G−) under the
projection T (G/M) → T (G/MA) is {0} (resp. E +, resp. E −). To simplify,
suppose that the rank-one group G has only one positive restricted root α
(in general, when G is not split, it can have two positive roots α and 2α).
Then for any a ∈ A, the differential map T (G/M) → T (G/M) of the right
multiplication by a restricts to the trivial map on G 0, to the multiplication by
the scalar α(a) > 0 on G +, and to the multiplication by 1/α(a) on G−. From
this observation (and its variant whenG has two positive roots α and 2α), one
easily deduces that (2.2) is equivalent to the existence of c, C > 0 such that

(2.3) α(am̂,t) ≥ C ect
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for all (m̂, t) ∈ M̂×R+. Note that if m̂ belongs to a periodic orbit of length
T of the geodesic flow (ϕt)t∈R, corresponding to an element γ ∈ Γ0, then

σ′(γ · m̂) = ρ(γ) · σ′(m̂) = σ′(m̂) am̂,T ,

hence ρ(γ) is conjugate in G to an element ofMam̂,T ⊂MA and logα(am̂,T )
is the length in ρ(Γ)\X of the closed orbit corresponding to ρ(γ). A formu-
lation of (2.2) similar to (2.3), but involving more than one root α, holds
when G has arbitrary real rank (see [GW, § 3.3]).

2.3.5. Anosov representations for general Gromov-hyperbolic groups. The def-
inition of Anosov representation has been extended in [GW] to any Gromov-
hyperbolic group Γ0: by [Gr, M], there is a natural action of the group
Γ0×Ro (Z/2Z) on some proper hyperbolic metric space Γ̂0 (the flow space,
replacing M̂ = T 1(Ñ ) in the situation above) such that

• the action of Γ0 × (Z/2Z) on Γ̂0 is isometric;
• every orbit map Γ0 → Γ̂0 is a quasi-isometry; in particular, ∂∞Γ0 '
∂∞Γ̂0;
• the action of R on Γ̂0 is free, and every orbit map R → Γ̂0 is a
quasi-isometric embedding; the induced map Γ̂0/R→ (∂∞Γ̂0)(2) is a
homeomorphism.

A representation ρ : Γ0 → G is said to be P -Anosov if there exists a contin-
uous, ρ-equivariant, R-invariant map σ : Γ̂0 → G/MA and, for any continu-
ous, ρ-equivariant family (‖ · ‖m̂)

m̂∈Γ̂0
of norms on Tσ(m̂)(G/MA), constants

c, C > 0 such that (2.2) holds for all m̂ ∈ Γ̂0 and all (w, t) in E +
σ(m̂) × R+ or

E −σ(m̂) × R−. As above, this is equivalent to the existence of c, C > 0 such

that (2.3) holds for all (m̂, t) ∈ Γ̂0 × R+.

2.4. Proof of Lemma 2.3. The implication (i)⇒ (ii) is immediate: if Γ is
convex cocompact, then it acts cocompactly on Conv(ΛΓ) ⊂ X, hence it is
finitely generated and any orbit map Γ→ X is a quasi-isometric embedding.
On the other hand, any orbit map G → X is a quasi-isometry since K is
compact.

To establish (ii)⇒ (i), it is sufficient to see that if Γ is finitely generated
and quasi-isometrically embedded in G, then for any x ∈ X the set FΓ of
Definition 2.1.(2) is contained in a uniform neighborhood of the Γ-orbit of x.
Choose a finite generating subset S of Γ and let

r = max
s∈S

dX(x, s · x) > 0.

Quasi-isometricity implies the existence of constants c, C > 0 such that for
any γ, γ′ ∈ Γ, there is a (c, C)-quasi-geodesic Gγ,γ′ from γ · x to γ′ · x which
is a concatenation of geodesic segments of length ≤ r with endpoints in Γ ·x.
Since X is Gromov-hyperbolic, there is a constant R > 0 (depending only
on (c, C) and on the hyperbolicity constant of X) such that any point of
the geodesic segment [γ · x, γ′ · x] lies at distance ≤ R from Gγ,γ′ , hence at
distance ≤ R + r from Γ · x. Since ΛΓ is the set of accumulation points of
Γ · x, we obtain that FΓ remains at distance ≤ R+ r from Γ · x by taking a
limit.
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X

γ ·x γ′ ·x

Gγ,γ′

Figure 1. If Γ is quasi-isometrically embedded in G, then
all geodesics of X with both endpoints in the limit set ΛΓ are
contained in some uniform neighborhood of Γ · x.

For (ii) ⇒ (iii), note that if the natural inclusion of Γ in G is a quasi-
isometric embedding, then so is any orbit map Γ → X by compactness
of K. In particular, Γ is Gromov-hyperbolic and any orbit map induces a
continuous, injective, Γ-equivariant map ξ : ∂∞Γ→ ∂∞X = G/P .

To establish (iii)⇒ (iv), we can use the natural homeomorphisms Γ̂/R '
(∂∞Γ)(2) and (G/P )(2) ' G/MA from Sections 2.2 and 2.3 to obtain, from ξ,
a continuous, Γ-equivariant, R-invariant map

σ : Γ̂ −→ G/MA.

Let σ′ : Γ̂ → G/M be a continuous, Γ-equivariant lift of σ. By Section 2.3,
it is sufficient to prove the existence of constants c, C > 0 such that (2.3)
holds for all m̂ ∈ Γ̂ and t ≥ 0. This follows from the compactness of Γ\Γ̂:
see [GW, Th. 4.11] for details in the case that Γ is Zariski-dense in G. (We
can reduce to the Zariski-dense case by using the general fact [Bo] that a
Zariski-closed subgroup of G is either reductive or contained in a proper
parabolic subgroup of G.)

The implication (iv) ⇒ (ii) is true when G has arbitrary real rank; we
explain it for rankR(G) = 1. (The general proof is similar, using a version
of (2.3) involving more than one root α.) Recall from Section 2.3 that if
(iv) holds, then there exist a continuous, Γ-equivariant, R-invariant map
σ : Γ̂ → G/MA and, for any continuous, Γ-equivariant lift σ′ : Γ̂ → G/M

of σ, constants c, C > 0 such that (2.3) holds for all m̂ ∈ Γ̂ and t ≥ 0.
The condition (2.3) implies that the restriction of σ′ to any periodic R-orbit
is a (c, C ′)-quasi-isometric embedding, for some C ′ > 0 independent of the
R-orbit. On the other hand, the hyperbolicity of Γ̂ implies the existence of
a constant R > 0 with the following property: for any y, y′ ∈ Γ̂, there exist
z, z′ ∈ Γ̂ such that z and z′ belong to the same R-orbit and the distances in Γ̂

between y and z, and between y′ and z′, are ≤ R. Therefore, σ′ : Γ̂→ G/M
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is a quasi-isometric embedding. SinceM is compact, Γ is quasi-isometrically
embedded in G.

3. Generalizations of convex cocompactness to higher rank

We now allow the semisimple group G to have arbitrary real rank. Let G1

(resp. G2) be the product of the simple factors of G of real rank 1 (resp. of
real rank ≥ 2). (Products are in fact almost products, but this is not very
important.) The Riemannian symmetric space X = G/K is the product of
the Riemannian symmetric spaces X1 of G1 and X2 of G2.

Fix a discrete subgroup Γ of G. If H is the Zariski-closure of Γ in G and
R(H) its radical, then the group H/R(H) is semisimple and the image of Γ
in H/R(H) is discrete (see [R, Cor. 8.27]). We may therefore restrict to the
case where Γ is Zariski-dense in G, up to replacing G with a smaller group.

3.1. Generalization of (1). In answer to a question of Corlette from 1994,
Kleiner and Leeb proved that in higher real rank, Definition 2.1.(1) for convex
cocompactness does not give any interesting example of discrete groups apart
from products of uniform lattices and convex cocompact subgroups of rank-
one factors.

Theorem 3.1 (Kleiner–Leeb [KL2]). Let C 6= ∅ be a Γ-invariant, closed,
convex subset of X with Γ\C compact. If Γ is Zariski-dense in G, then C =
C1 ×X2 for some Γ-invariant, closed, convex subset C1 of X1; in particular,
Γ is a product of convex cocompact subgroups of the rank-1 factors of G1 and
of a uniform lattice of G2.

The proof easily reduces to the case that G is simple of real rank ≥ 2.
In this case, Kleiner and Leeb use results from [Be] and [KL1] to prove
that the geometric boundary of C is a top-dimensional subbuilding of the
spherical building at infinity (Tits boundary) of X, which is a closed subset
with respect to the topology of the visual boundary of X. The main step
in [KL2] is then to show that any such subbuilding is either equal to the
full visual boundary of X or contained in the visual boundary of a proper
symmetric subspace of X. This last possibility is ruled out by the Zariski-
density assumption on Γ, and so C = X.

On the other hand, Quint [Q] investigated generalizations of the definitions
(2) and (3) of convex cocompactness from Section 2.1. Before we explain his
work, we recall interpretations of the homogeneous spaces G/P , G/MA, and
G/M in arbitrary real rank.

3.2. The homogeneous spaces G/P , G/MA, and G/M . In real rank 1,
the homogeneous space G/P identifies with the visual boundary of X =
G/K, namely with the set of equivalence classes of geodesic rays of X for
the relation “to be at finite Hausdorff distance”. In higher real rank, the visual
boundary of X is more complicated; its regular part contains infinitely many
copies of G/P . However, we can see G/P as the Furstenberg boundary of X,
which is the set of equivalence classes of Weyl chambers of X for the relation
“to be at finite Hausdorff distance”.

Recall that a maximal flat of X is a flat, totally geodesic subspace of X
that is maximal for inclusion. For instance, the A-orbit of the origin x0 :=
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eK ∈ G/K = X is a maximal flat F0, and the other maximal flats are the G-
translates of F0; they are all isometric to Rn where n = rankR(G) = dimA.
Let A+ be the closed positive Weyl chamber of A corresponding to our choice
of positive restricted root system: by definition, A+ is the subset of A on
which all positive restricted roots take values ≥ 1. A Weyl chamber of X is
a G-translate of A+ · x0 ⊂ X. The Weyl group

W := NG(A)/ZG(A) = NG(A)/MA

(where NG(A) denotes the normalizer of A in G) naturally acts on A; this
induces a faithful action of W on F0 = A · x0, which is generated by the
orthogonal reflections along some hyperplanes H1, . . . ,Hn of F0 bounding
the Weyl chamber A+ · x0.

H1

H2

H1

H2

Figure 2. Weyl chambers in a maximal flat of X for G =
SL3(R) (type A2) and for G = Sp4(R) (type C2).

As in Section 2.2, the homogeneous spaceG/MA identifies with the unique
open G-orbit O in G/P ×G/P . (In higher rank there are more than two G-
orbits.) Pairs of elements of G/P that belong to O are said to be in general
position.

Example 3.2. For G = SLn+1(R), the space G/P identifies with the set of
maximal flags (V1 ⊂ · · · ⊂ Vn) of Rn+1, and the open G-orbit O is the set of
pairs of maximal flags

(ξ, η) =
(
(V1 ⊂ · · · ⊂ Vn) , (V ′1 ⊂ · · · ⊂ V ′n)

)
such that Vi ⊕ V ′n+1−i = Rn+1 for all 1 ≤ i ≤ n. For any (ξ, η) ∈ O we can
find a basis (e1, . . . , en+1) of Rn+1 that is adapted to (ξ, η), in the sense that

ξ =
(
〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en〉

)
,

η =
(
〈en+1〉 ⊂ 〈en, en+1〉 ⊂ · · · ⊂ 〈e2, . . . , en+1〉

)
.

•We shall identify G/P with the set of equivalence classes of Weyl chambers
of X by mapping gP ∈ G/P to g · ξ+

0 for all g ∈ G, where ξ+
0 is the class of

the Weyl chamber A+ · x0 ⊂ F0. (The stabilizer of ξ+
0 in G is P .)

• We shall identify G/MA with the open G-orbit O ⊂ G/P × G/P by
mapping gMA ∈ G/MA to g · (ξ+

0 , ξ
−
0 ) for all g ∈ G, where ξ−0 is the class

of the Weyl chamber (A+)−1 · x0 ⊂ F0. (The element ξ−0 has stabilizer P−

in G, hence (ξ+
0 , ξ

−
0 ) has stabilizer P ∩ P− = MA.)
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• The set G/MA surjects G-equivariantly onto the set of maximal flats of X
by mapping (ξ+

0 , ξ
−
0 ) to F0. The fiber is the Weyl group W , acting on F0 =

A · x0 as above.

G/MA
∼−→ O

fiber W

−� {maximal flats of X}(3.1)

gMA 7−→ g · (ξ+
0 , ξ

−
0 ) 7−→ g · F0

We shall also consider the homogeneous space G/M , which identifies with
the actual set of Weyl chambers of X (not modulo equivalence) with the
natural action of G. When rankR(G) = 1, a Weyl chamber is a geodesic ray,
hence is determined by its endpoint in X and its direction at the endpoint:
in this case, G/M identifies with the unit tangent bundle T 1(X). When
rankR(G) ≥ 2, the space T 1(X) has larger dimension than G/M :

dim(T 1(X)) = 2 dim(X)− 1 = 2 dim(a) + 2 dim(n)− 1,

dim(G/M) = dim(G)− dim(M) = dim(a) + 2 dim(n),

where the right-hand equality in the first (resp. second) line follows from the
Iwasawa decomposition g = k + a + n (resp. from (1.1)). As in Section 2.3,
the group A acts on G/M by right multiplication. When rankR(G) = 1 (i.e.
dim(A) = 1), this is the geodesic flow on T 1(X). In general, the right action
of A on G/M (or on Γ\G/M) is called the Weyl chamber flow.

3.3. Generalization of (2) and (3). Suppose that Γ is Zariski-dense in G.
By work of Benoist [Be], when rankR(G) ≥ 2 there still exists (as in the classi-
cal situation where rankR(G) = 1) a smallest, nonempty, closed, Γ-invariant
subset ΛΓ of G/P , called the limit set of Γ. Explicitly, ΛΓ is the set of points
ξ ∈ G/P such that some sequence (γn)n∈N of elements of Γ “contracts G/P
towards ξ”, in the sense that the push-forward by γn of the K-invariant prob-
ability measure ν on G/P ' K/M converges weakly to the Dirac mass in ξ
(i.e. ν(γ−1

n ·U)→ 1 for any open subset U of G/P containing ξ). Limit sets in
higher real rank were first introduced by Guivarc’h [Gh] for G = SLn+1(R).

Let A+ be the interior of A+ in A (open positive Weyl chamber). An
element g ∈ G is said to be proximal if it is conjugate to an element ofMA+.
In this case, it has a unique attracting fixed point ξ+

g and a unique repelling
fixed point ξ−g in G/P ; these two points are in general position.

Benoist proved that the limit set ΛΓ is in fact the closure in G/P of the
set of fixed points ξ+

γ for proximal γ ∈ Γ [Be, Lem. 3.6.(iii)]. Moreover, the
set (ΛΓ × ΛΓ) ∩ G/MA is the closure in G/MA of the set of pairs (ξ+

γ , ξ
−
γ )

for proximal γ ∈ Γ [Be, Lem. 3.6.(iv)].
We shall consider the following generalization of Definition 2.1.(2) for con-

vex cocompactness:
(2) Γ acts cocompactly on FΓ,

where we define FΓ be the union of all maximal flats of X which are images
of points of (ΛΓ × ΛΓ) ∩ G/MA under (3.1). We shall also consider the
following generalization of Definition 2.1.(3) for convex cocompactness:

(3) the intersection of the a+-conservative and (−a+)-conservative sets
of the Weyl chamber flow on Γ\G/M is compact.
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Here we set a+ = logA+ ⊂ a and use the following terminology (where ‖·‖ is
any fixed norm on a).

Definition 3.3. Let Ω be an open cone of a. A point x ∈ Γ\G/M is Ω-
conservative if there exists a sequence (an)n∈N of elements of A, tending to
infinity, such that (xan)n∈N is bounded in Γ\G/M and log(an)/‖ log(an)‖
converges to a point of Ω. The Ω-conservative set of the Weyl chamber flow
on Γ\G/M is the closure of the set of Ω-conservative points.

Quint established the following relations between the generalized defini-
tions (1), (2), (3) of convex cocompactness.

Lemma 3.4 (Quint [Q]). In any real rank,

(1) =⇒ (2)⇐⇒ (3).

He also proved that in higher real rank, the definitions (2) and (3) for
convex cocompactness do not give any interesting example of discrete groups
apart from products of uniform lattices and convex cocompact subgroups of
rank-one factors.

Theorem 3.5 (Quint [Q]). If Γ is Zariski-dense and satisfies (2) or (3), then
Γ is a product of convex cocompact subgroups of the rank-1 factors of G1 and
of a uniform lattice of G2; in particular, any nonempty, Γ-invariant, closed,
convex subset C of X is of the form C = C1×X2 for some Γ-invariant closed
convex subset C1 of X1.

In the rest of these notes, we shall explain the essential ideas of the proof
of Lemma 3.4 and Theorem 3.5.

4. Main steps in the proof of Theorem 3.5

4.1. Proof of (2)⇔ (3). Let E′Γ be the (full) preimage of (ΛΓ∩ΛΓ)∩G/MA
in G/M , and let EΓ = Γ\E′Γ ∈ Γ\G/M . In other words,

(4.1) EΓ =
{

ΓgM ∈ Γ\G/M : g · (ξ+
0 , ξ

−
0 ) ∈ ΛΓ × ΛΓ

}
.

By construction, EΓ is closed and right-A-invariant. Note that the image of
E′Γ ⊂ G/M in X = G/K is FΓ. Since the fiber K/M is compact, the com-
pactness of EΓ is equivalent to the cocompactness of the action of Γ on FΓ.

E′Γ⋂ EΓ⋂
G/M

zztt
tt
tt
tt
tt
tt
tt

!!D
DD

DD
DD

DD
DD

D

// Γ\G/M

G/MA X = G/K

(ΛΓ ∩ ΛΓ) ∩G/MA

⋃
FΓ

⋃

The equivalence (2) ⇔ (3) in Lemma 3.4 is an immediate consequence of
this observation and of the following lemma.
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Lemma 4.1 [Q, Cor. 4.2]. In any real rank, EΓ is the intersection of the a+-
conservative and (−a+)-conservative sets of the Weyl chamber flow on Γ\G/M .

Proof. Consider x = ΓgM ∈ Γ\G/M .
If x is a+-conservative, then by definition there exist a sequence (an) ∈ AN

going to infinity, a bounded sequence (κn) ∈ GN, and a sequence (γn) ∈ ΓN,
such that log(an)/‖ log(an)‖ converges to a point of a+ and

g an = γn κn

for all n ∈ N. Up to passing to a subsequence, we may assume that κn → κ
for some κ ∈ G. The subset U0 of G/P consisting of points that are in
general position with ξ−0 is open and dense in G/P . By Remark 4.2 below,
for any ξ ∈ G/P with κ−1 · ξ ∈ U0,

γn · ξ = ganκ
−1
n · ξ −→

n→+∞
g · ξ+

0 ,

and this convergence is uniform on compact sets. Therefore, if ν is the K-
invariant probability measure on G/P , we have ν(γ−1

n · U)→ 1 for any open
subset U of G/P containing g ·ξ+

0 , which means by definition that g ·ξ+
0 ∈ ΛΓ.

Similarly, if x is (−a+)-conservative, then g · ξ−0 ∈ ΛΓ, hence x ∈ EΓ.
Conversely, suppose x ∈ EΓ, i.e. g · (ξ+

0 , ξ
−
0 ) ∈ ΛΓ × ΛΓ. If g · (ξ+

0 , ξ
−
0 ) =

(ξ+
γ , ξ

−
γ ) for some loxodromic element γ ∈ Γ, then g−1γg ∈ Ma for some

a ∈ A+. We have xan = x = xa−n for all n, hence x is both a+-conservative
and (−a+)-conservative. In general, we use the density [Be, Lem. 3.6.(iv)] of
the set of pairs (ξ+

γ , ξ
−
γ ) in (ΛΓ × ΛΓ) ∩G/MA. �

In the proof we have used the following remark.

Remark 4.2. The subset U0 of G/P consisting of points that are in general
position with ξ−0 is the P−-orbit of ξ+

0 . It identifies with P−/(P ∩ P−), or
equivalently with n− endowed with an action of P− whose restriction toMA
is the adjoint action (ξ+

0 ∈ U0 corresponds to 0 ∈ n−). In particular, for any
sequence (an) ∈ AN, if α(an)→ +∞ for all positive restricted roots α, then
an · ξ → ξ+

0 for all ξ ∈ U0, and the convergence is uniform on compact sets.

4.2. Strategy of proof of Theorem 3.5. Note that the Weyl group W =
NG(A)/MA acts on G/MA by multiplication on the right.

Suppose that (2) and (3) are satisfied. Then the right-A-invariant set EΓ

is compact, hence any point of EΓ is Ω-conservative for any open cone Ω
of a. Taking Ω = w · a+ for w ranging over W , applying Lemma 4.1, and
using (4.1), we obtain that ΛΓ is W -stable, in the following sense.

Definition 4.3. A subset Λ of G/P is W -stable if (Λ×Λ)∩G/MA is right-
W -invariant, which means that for any g ∈ G such that g · (ξ+

0 , ξ
−
0 ) ∈ Λ×Λ

we have gw · ξ+
0 ∈ Λ for all w ∈W .

Theorem 3.5 therefore reduces to the following proposition.

Proposition 4.4 [Q, Prop. 3.1]. The only closed, Zariski-dense, W -stable
subset Λ of G/P is G/P .

Quint first establishes Proposition 4.4 in the case that G is simple of real
rank 2, i.e. for restricted root systems of type A2 (e.g. G = SL3(R)), of type
B2 = C2 (e.g. G = Sp4(R)), and of type G2. This relies on a combinatorial
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argument, which we give in Section 5 for G = SL3(R). He then reduces the
general case to the rank-2 case, as we explain for G = SLn(R) in Section 6.

5. Proof of Proposition 4.4 for G = SL3(R)

In this section we take G = SL3(R) and see G/P as the set of pairs (p, `)
where p is a point of RP2 and ` ⊂ RP2 a projective line containing p.

Let Λ be a closed, Zariski-dense, W -stable subset of G/P . We denote by
Λ0 (resp. Λ1) the projection of Λ to the set of points (resp. projective lines)
of RP2; it is Zariski-dense in RP2 (resp. in the space of projective lines of
RP2) since Λ is Zariski-dense in G/P .

For any projective line ` ⊂ RP2 and any point q ∈ RP2 r `, we call
projection from q onto ` the map from RP2r{q} to ` that sends any projective
line through q (minus {q}) to its intersection point with `.

5.1. Preliminary remarks. Before we prove Proposition 4.4, we make a
few useful observations leading to a reduction of the proposition.

(i) The W -stability of Λ means that the six flags determined by any pair of
elements of Λ all belong to Λ (see Figure 3).

p1

p2
p3

`1

`2

`3

Figure 3. If (p1, `1) and (p2, `2) belong to the W -stable
set Λ, then so do (p1, `3), (p2, `1), (p3, `2), and (p3, `3).

In particular, for any `1 6= `2 in Λ1 the intersection `1 ∩ `2 belongs to Λ0,
for any p1 6= p2 in Λ0 the projective line through p1 and p2 belongs to Λ1,
and the projection from a point q ∈ Λ0 onto a line ` ∈ Λ1 disjoint from q
preserves Λ0.

(ii) This implies that for any ` ∈ Λ1 the set `∩Λ0 is Zariski-dense in `, and
for any p ∈ Λ0 the set of projective lines of Λ1 through p is Zariski-dense in
the set of projective lines of RP2 through p.

Indeed, for the first statement, fix ` ∈ Λ1 and choose an arbitrary point
q ∈ Λ0 r `. By (i), the projection from q onto ` maps the Zariski-dense
subset Λ0 r{q} of RP2 to Λ0∩ `. Therefore, Λ0∩ ` is Zariski-dense in `. The
second statement is similar.

(iii) In order to establish Proposition 4.4 for G = SL3(R), it is sufficient to
prove the following.
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Claim 5.1. Any line ` ∈ Λ1 is contained in Λ0, and any projective line
through a point p ∈ Λ0 belongs to Λ1.

Indeed, consider (p, `) ∈ G/P . Since Λ is Zariski-dense in G/P , we can
find an element (p′, `′) ∈ Λ in general position with (p, `). Claim 5.1 gives
successively that (`∩ `′) ∈ Λ0, that ` ∈ Λ1, and that p ∈ Λ0. In other words,
there exist a projective line `1 through p and a point p2 ∈ ` such that (p, `1)
and (p2, `) belong to Λ. Then (p, `) ∈ Λ by (i).

5.2. Reduction to a rank-1 result. In order to prove Claim 5.1, we can
reduce to real rank 1 and use the following lemma.

Lemma 5.2 [Q, Prop. 2.1]. Suppose G has real rank 1 and let Λ be a Zariski-
dense subset of G/P with the following property: for any ξ ∈ Λ the group of
unipotent elements u ∈ G such that u · ξ = ξ and u · Λ = Λ acts transitively
on Λ r {ξ}. Then Λ = G/P .

Indeed, suppose that Lemma 5.2 is proved and consider ` ∈ Λ1 and p ∈ `.
By Lemma 5.2, in order to prove that p ∈ Λ0, it is sufficient to see that the
set of projective transformations u of ` that preserve Λ0∩ ` and admit p as a
unique fixed point, acts transitively on (Λ0∩`)r{p}. (Such transformations
correspond to unipotent elements of the stabilizer of `, which is isomorphic
to SL2(R).) To see this, consider p1 6= p2 in (Λ0 ∩ `) r {p}.
• By (ii), there exist two distinct lines `1, `2 ∈ Λ1 through p, different from `.
• By (ii) again, there exist p3 6= p in `1 ∩Λ0. Let us denote by p4 (resp. p5)
the image of p1 (resp. p2) under the projection from p3 onto `2 (see Figure 4).
• By (i), the points p4 and p5 belong to Λ0.
• By (i) again, the projection projp4,`1 from p4 onto `1 preserves Λ0, and so
does the projection projp5,` from p5 onto `. In particular, the map

u := projp5,` ◦ projp4,`1 ,

which preserves `, also preserves Λ0 ∩ `. It maps p1 to p2 and admits p
as a unique fixed point. This completes the proof of Claim 5.1, hence of
Proposition 4.4 for G = SL3(R).

5.3. Proof of Lemma 5.2. We may assume that G is connected. Let S be
the stabilizer of Λ in G; it is a closed subgroup of G.
• S is Zariski-dense in G. Indeed, let H be the identity component (for
the real topology) of the Zariski closure of G. The flag variety of H is a
Zariski-closed subset of G/P ; by assumption, it contains the Zariski-dense
set Λ, hence it is equal to G/P . This implies H = G.
• S is not discrete in G. Indeed, since Λ is infinite and G/P is compact,
Λ admits a nonisolated point η: there exists a sequence (ηn)n∈N of pairwise
distinct points of Λ converging to η. By assumption, for any n there exists a
unipotent element un ∈ S such that un · ξ = ξ and un ·η = ηn. The sequence
(un)n∈N converges to 1, hence S is not discrete.

This implies that S = G (a Zariski-dense subgroup of a connected semisim-
ple Lie group is either discrete or dense), and so Λ = G/P .
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p

p1

p2

p3

p4

p5

p′
u(p′)

`

`1

`2

Figure 4. Construction of a unipotent transformation u.

6. Reducing to rank-2 groups in Proposition 4.4

To simplify notation and make the proof more concrete, we suppose that
G = SLn+1(R), that A is the subgroup of diagonal matrices with positive
entries, and that P is the group of upper triangular matrices (Example 1.1).
The space G/P identifies with the set of maximal flags

(V1 ⊂ · · · ⊂ Vn)

of Rn+1 (Example 3.2). Let αi = εi − εi+1, for 1 ≤ i ≤ n, be the stan-
dard simple roots of A in G. For any i, let Pi be the parabolic subgroup
of G associated with {αi}, consisting of upper triangular block matrices with
square diagonal blocks of size 1, . . . , 1, 2, 1, . . . , 1, where 2 is the i-th entry.
For ξ = g · ξ+

0 ∈ G/P , we set

P ξi = gPig
−1.

Let Λ be a closed, Zariski-dense, W -stable subset of G/P . To show that
Λ = G/P , we first note that for any ξ, η ∈ G/P in general position, there is
a finite sequence

ξ = ξ1, ξ2, . . . , ξk+1 = η

of elements of G/P such that for any 1 ≤ j ≤ k we have ξj+1 ∈ P
ξj
ij
· ξj for

some 1 ≤ ij ≤ n. Indeed, write the longest element

w0 : (1, . . . , n+ 1) 7−→ (n+ 1, . . . , 1)
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of the Weyl group W ' Sn+1 as a product τ1 . . . τk of transpositions τj :
(ij , ij + 1) 7→ (ij + 1, ij); if (ξ, η) = g · (ξ+

0 , ξ
−
0 ), then we may take

ξj+1 := gτ1 . . . τj · ξ+
0

for all j. By induction, it is sufficient to prove that if ξj ∈ Λ, then ξj+1 ∈ Λ.
Let us prove a stronger statement, namely that for any ξ ∈ Λ and any

1 ≤ i ≤ n− 1 we have Qξi · ξ ⊂ Λ, where Qξi is the parabolic subgroup of G
generated by P ξi and P ξi+1. To simplify notation, we assume that ξ = ξ+

0

(the proof for general ξ is similar). The group Qi := Q
ξ+0
i admits a Levi

decomposition
Qi = Zi Si n RadU,i,

where RadU,i ⊂ N is the unipotent radical of Qi (i.e. the largest connected
normal unipotent subgroup), Zi ⊂ A is the center of Qi (consisting of diago-
nal matrices whose i-th, (i+1)-th, and (i+2)-th entries are equal), and Si is
a semisimple Lie group (isomorphic to SL3(R)). The orbit Qi · ξ+

0 identifies
with Qi/(P ∩Qi) and, seen as an Si-homogeneous space, with Si/(P ∩ Si),
which is the flag variety of Si ' SL3(R).

qi

radU,i

zi

si

In order to prove that Qi · ξ+
0 ⊂ Λ, assuming ξ+

0 ∈ Λ, it is enough (by the
rank-2 case of Proposition 4.4 treated in Section 5) to prove the following.

Claim 6.1. The set Λ ∩ (Qi · ξ+
0 ), seen as a subset of the flag variety of Si,

is closed, Zariski-dense, and stable under the Weyl group of Si.

Proof. Let pr1 : G/MA ' O ⊂ G/P ×G/P → G/P be the projection onto
the first factor and let wi ∈ W ' Sn+1 be the transposition (i, i + 2) 7→
(i + 2, i). Recall that the Weyl group W = NG(A)/MA acts on G/MA on
the right. For any ξ ∈ G/P , let Uξ be the (Zariski-dense) set of elements of
G/P that are in general position with ξ. We define a map πξi : Uξ → G/P by

(6.1) πξi (η) = pr1

(
(ξ, η) · wi

)
for all η ∈ Uξ. Concretely, if (e1, . . . , en+1) is a basis of Rn+1 adapted to (ξ, η)
(see Example 3.2), then

(6.2) πξi (η) =
(
V1 ⊂ · · · ⊂ Vi−1 ⊂ V ′i ⊂ V ′i+1 ⊂ Vi+2 ⊂ · · · ⊂ Vn

)
where ξ = (V1 ⊂ · · · ⊂ Vn) and

(6.3) V ′i := Vi−1 + R ei+2, V ′i+1 := Vi−1 + R ei+1 + R ei+2.
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We now restrict to ξ ∈ Qi ·ξ+
0 . From (6.2) and (6.3) we see that the set πξi (Uξ)

is contained in Qξi · ξ = Qi · ξ+
0 , and in fact identifies with the set of elements

of Si/(P ∩Si) that are in general position with the image of ξ; in particular,
πξi (Uξ) is Zariski-dense in Qi · ξ+

0 ' Si/(P ∩ Si). From (6.1) we see that:

• πξi is an algebraic homomorphism; in particular, since Λ ∩ Uξ is
Zariski-dense in Uξ, the set πξi (Λ ∩ Uξ) is Zariski-dense in πξi (Uξ),
hence in Qi · ξ+

0 ;
• if ξ ∈ Λ, then πξi (Λ ∩ Uξ) ⊂ Λ since Λ is W -stable.

Therefore, the set Λ∩ (Qi · ξ+
0 ) is Zariski-dense in Qi · ξ+

0 . Let us prove that
it is Wi-stable as a subset of Si/(P ∩ Si), where

Wi = NSi(A ∩ Si)/ZSi(A ∩ Si)

is the Weyl group of Si, which embeds in W as the subgroup generated by
the transpositions (i, i + 1) 7→ (i + 1, i) and (i + 1, i + 2) 7→ (i + 2, i + 1).
From (6.1) and the W -stability of Λ we see that for any ξ ∈ Λ∩ (Qi ·ξ+

0 ) and
any η ∈ Λ ∩ Uξ we have (ξ, πξi (η)) · w′i ∈ Λ × Λ for all w′i ∈ Wi. Therefore,
it is sufficient to prove that for any pair (ξ, ζ) of points of Λ∩ (Qi · ξ+

0 ) that
are in general position in Qi · ξ+

0 ' Si/(P ∩ Si), we can write ζ = πξi (η) for
some η ∈ Λ∩Uξ. Fix such a pair (ξ, ζ) and consider a point τ ∈ Λ∩Uξ ∩Uζ ;
then we may take η := πτn−i(ζ). �

7. Proof of (1)⇒ (2) in Lemma 3.4

In order to prove that (1) implies (2), it is sufficient to check the following.

Lemma 7.1 [Q, Lem. 5.4]. The set FΓ is contained in any nonempty, Γ-
invariant, closed, convex subset C of X = G/K.

Recall from Section 3.3 that FΓ is the set of maximal flats ofX correspond-
ing to elements of (ΛΓ × ΛΓ) ∩G/MA under (3.1). For (ξ, η) ∈ G/MA, we
shall denote by F(ξ, η) the corresponding maximal flat of X.

Recall that any element of G admits a Jordan decomposition: g = ghgegu
for some unique commuting elements gh, ge, gu ∈ G with gh hyperbolic (i.e.
conjugate to an element ag ∈ A+), with ge elliptic (i.e. conjugate to an ele-
ment ofM), and with gu unipotent. We denote by λ : G→ a+ := logA+ the
Lyapunov projection of G, defined by λ(g) = log ag for all g. By definition,
the limit cone LΓ is the smallest closed cone of a+ containing λ(Γ). Benoist
[Be] proved that if Γ is Zariski-dense in G, then LΓ is convex with nonempty
interior.

Sketch of proof of Lemma 7.1. The set of pairs (ξ+
γ , ξ

−
γ ) for loxodromic γ ∈ Γ

is dense in (ΛΓ × ΛΓ) ∩ G/MA [Be, Lem. 3.6.(iv)]. Therefore, by convexity
of C, it is sufficient to prove that F(ξ+

γ , ξ
−
γ ) ⊂ C for any loxodromic γ ∈ Γ.

This is done in four steps:
(a) The flat F(ξ+

γ , ξ
−
γ ) meets C. Indeed, for any point x ∈ C, the geodesic

segments [γn · x, γ−n · x], for n ∈ N, are contained in C and converge
(up to passing to a subsequence) to a geodesic line in F(ξ+

γ , ξ
−
γ ) ∩ C

(see [Q, Lem. 5.2]).
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(b) By [Be, Lem. 4.2 bis], for any v ∈ LΓ with ‖v‖ = 1 there is a sequence
(γn)n∈N of loxodromic elements of Γ such that λ(γn)/‖λ(γn)‖ → v
and (ξ+

γn , ξ
−
γn)→ (ξ+

γ , ξ
−
γ ).

(c) This implies that for any v ∈ LΓ with ‖v‖ = 1, the set F(ξ+
γ , ξ

−
γ )∩C

contains a geodesic of direction v (after identification of F(ξ+
γ , ξ

−
γ )

with F0, hence with a, which is well-defined up to the action of the
Weyl group W ). Indeed, fix x ∈ F(ξ+

γ , ξ
−
γ )∩C. For any n ∈ N, there

is a geodesic of direction λ(γn) in F(ξ+
γn , ξ

−
γn)∩C whose distance to x

is bounded independently of n (see [Q, Lem. 5.2]). Up to passing to
a subsequence, these lines converge to a geodesic of direction v in
F(ξ+

γ , ξ
−
γ ) ∩ C.

(d) The limit cone LΓ has nonempty interior [Be, Th. 1.2]. By (c), the
set F(ξ+

γ , ξ
−
γ ) ∩ C contains lines whose directions form a cone with

nonempty interior. This implies F(ξ+
γ , ξ

−
γ ) ⊂ C by convexity of C. �
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LECTURE NOTES FOR CONVEX REAL PROJECTIVE

STRUCTURES

QIONGLING LI

Introduction

This short note consists of two parts.
Part I is to introduce the convex RP 2-structures on a compact surface

and to explain that the deformation space of such structures on a closed
surface S of genus g > 1 form a moduli space B(S) homeomorphic to an
open cell of dimension 16(g − 1). This work is done by Choi and Goldman.

Part II is to explain the correspondence between the deformation space
B(S) and the space of pairs (Σ, U), where Σ is a Riemann surface varying
in Teichmüller space and U is a cubic differential on Σ. Teichmüller space
T (S) embeds inside B(S) as the locus of pairs (Σ, 0), where Σ is a Riemann
surface varying in Teichmüller space. This work is independently done by
Labourie and Loftin.

Part I: Deformation space of convex RP 2-structures

1. Convex RP 2-structures

Definition 1. An RP 2-structure on a smooth 2-manifold M is a system of
coordinate charts {(Uα, φα)} satisfying

(i) {Uα} is an open cover of M ;
(ii) ψα : Uα → RP 2 is a diffeomorphism onto its image;
(iii) ψβ ◦ ψα−1 ∈ PGL(3,R).
A manifold with an RP 2-structure is called an RP 2-maniflod.

1
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Definition 2. An RP 2-structure on M is called convex if its developing map

is a diffeomorphism of M̃ onto a convex domain Ω in some affine R2 ⊂ RP 2.
In this case, we can realize M = Ω/Γ, where Γ is a subgroup of PGL(3,R)
which acts discretely and properly discontinuous on Ω.

Fact. Let M = Ω/Γ be a closed surface with a convex RP 2-structure. Sup-
pose that χ(M) < 0. Then the following hold.
(1) Ω ⊂ RP 2 is a strictly convex domain with C1 boundary and therefore
contains no affine line.
(2) Either ∂Ω is a conic in RP 2 or in not C1+ε for some 0 < ε < 1.
(3) The attracting and repelling fixed points of elements of Γ form a dense
subset of ∂Ω. Furthermore given any pair (x, y) ∈ ∂Ω × ∂Ω, there exists a
sequence γn ∈ Γ such that Fix+(γn)→ x, and Fix−(γn)→ y.

Let S denote a compact surface.

Definition 3. RP 2(S) := {(f,M)|f : S → M is a diffeomorphism and M
is an RP 2-manifold}/ , where (f,M) (f ′,M ′) if there exists a projective
isomorphism h : M →M ′ such that h ◦ f is isotopic to f ′.
B(S) denotes the subset of RP 2(S) corresponding to convex RP 2-structures.

Fact. (1) The set of equivalent classes RP 2(S) have a natural topology mak-
ing it locally equivalent to Hom(π, PGL(3,R))/PGL(3,R), i.e., there exists
a holonomy map hol : RP 2(S) → Hom(π, PGL(3,R))/PGL(3,R) which is
a local diffeomorphism.
(2) B(S) is open in RP 2(S).

Excercise 1. Show the following.
(1) RP 2(S) is a Hausdorff real analytic manifold of dimension −8χ(S);
(2) The restriction of hol : RP 2(S)→ Hom(π, SL(3,R))/SL(3,R) to B(S) is
an embedding of B(S) onto a Hausdorff real analytic manifold of dimension
−8χ(S).

Our main goal to show the following theorem.

MainTheorem. (Goldman [3]) Let S be a compact surface having a bound-
ary components such that χ(S) < 0. Then B(S) is diffeomorphic to a celll of
dimension −8χ(S) and the map which associates to a convex RP 2-structures
neaat ∂M is a fibration of B(S) over an open 2n-cell with fiber an open cell
of dimension −8χ(S)− 2n.

Corollary 1.1. Let S be a closed orientable surface of genus g > 1. Then
B(S) is diffeomorphic to an open celll of dimension 16(g − 1).

To prove the above main theorem, we cut a surface into pair-of-pants as
what we did in Teichmueller theory. We first try to understand the simplest
case when where S is a pair-of-pants. Then if we know how to assemble the
convex RP 2-structures on pair-of-pants together, especially if the convex
property is preserved (which is indeed true), we are almost done.
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2. Convex RP 2-structures on a pair-of-pants

In this section, we prove Theorem 1 in the case where S is a pair-of-pants
with A,B,C three components.

Theorem 2.1. The deformation space B(S) of convex RP 2-structures on S
is an open 8-dimension cell.

Sketch of Proof.
Suppose that A ∈ SL(3,R). We define λ(A) to be the real eigenvalue of

A ∈ SL(3,R) having the smallest absolute value and τ(A) ∈ R as the sum
of the other two (possibly unreal) eigenvalues. We can show that the pair
(λ(A), τ(A)) is a complete invariant of the SL(3,R)-conjugacy class of the
boundary A. Such pairs form a 2-cell.

Denote O as the space of SL(3,R)-conjugation classes of the set of all
(40,4a,4b,4c, A,B,C) satisfying conditions described in following pic-
ture.

The reason we consider O instead of B(S) is because:
(1) O is computable and,
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(2) Each RP 2-structure corresponding to a point in O is convex, i.e.,O =
B(S). (the claim needs more proof.)

Now it is sufficient to show the map θ∂S : B(S)→ B(∂S) obtained by asso-
ciating to a convex structure the boundary invariants ((λ, τ)A, (λ, τ)B, (λ, τ)C)
is a fibration over an open 6-cell with fiber a 2-dimensional open cell.

Since O considers the conjugation class under SL(3,R), then we can con-
sider the set (40,4a,4b,4c) as following picture parametrized by (b1, c1, a2, b2, a3, b3).
Note this set is not fixed under diagonal matrices diag(λ, µ, ν) with λµν = 1.
So actually we have 4 dimensional parameters for the conjugation clases
(40,4a,4b,4c).

Here A is parametrized by new parameters (α1, β1, γ1), written as

Here B is parametrized by new parameters (α2, β2, γ2), written as
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Here C is parametrized by new parameters (α3, β3, γ3), written as

From det(A) = det(B) = det(C) = 1, we obtain that

From CBA = 1, we obtain that

The above six equations actually can be reduced to 5 restrictions. Hence
considering (A,B,C) gives us 9-5=4 more parameters. Hence we can see
dim(O) = 4 + 4 = 8.

We are not finished since we need to know O is a cell. Actually, if we are
careful, we may be able to choose two more right parameters (s, t) valued in
R+ besides the boundary invariants ((λ, τ)A, (λ, τ)B, (λ, τ)C), then we are
done.

3. Assembling convex RP 2-structures

The proof is based on the Fenchel-Nilsen coordinate system on Teich-
mueller space. The proof of Main Theorem is based on the following two
lemmas,

Lemma 3.1. (Gluing Convex RP 2-manifolds) Let M0 be a compact
convex RP 2-manifold with principal boundary, and suppose that b1, b2 ⊂
∂M0 are boundary components with collar neighborhoods bi ⊂ N(bi) ⊂
M0(i = 1, 2). Suppose that f : N(b1)→ N(b2) is a projective isomorphism.
Then the RP 2-manifold M0/f obtained by identification by f : N(b1) →
N(b2) is a convex RP 2-manifold.
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From the above lemma, we know that gluing convex RP 2-structures along
a geodesic curve C only depends on the projective isomorphism f on the
neighborhood of C. Then conversely we actually know how much informa-
tion we lose if we cut a convex RP 2-structure along a geodesic curve, which
is stated in the following lemma.

Lemma 3.2. (Gut Convex RP 2-manifolds) Suppose that C ⊂ S is a
two-sided simple closed curve such that each component of S|C has negative
Euler characteristic. Let ΠC : B(S) → a subspace of B(S|C) be the map
which arises from splitting a convex RP 2-structure on S along the closed
geodesic homotopic to C. Then ΠC is a fibration and each fiber of is an
open 2-cell.

Sketch of Lemma: Let b1, b2 ⊂ ∂(S|C) be the two boundary components
corresponding to C. We now define an R2-action Ψ on B(S) such that ΠC

is a Ψ-invariant fibration onto the subspace of B(S|C) defined by the condi-
tions (λ, τ)b1 = (λ, τ)b2 and Ψ is simply transitive on each fiber of ΠC . For
(u, v) ∈ R2 we construct a new convex RP 2-manifold Ψ(u,v)(M) representing

a point in RP 2-manifold.
Consider the split RP 2-manifold M |C; let b1, b2 ⊂ ∂(M |C) be the two
boundary components corresponding to C. For any (u, v) ∈ R2, there exists
a principal collar neighborhoods N(bi) ⊂M |C of bi for i = 1, 2
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Let T u =

e−u 0 0
0 1 0
0 0 eu

 , Uv =

e−v 0 0
0 e2v 0
0 0 e−v

, where u, v ∈ R. Let

f(u, v) : N(b1) → N(b2) be a projective isomorphism such that f(u, v) is
induced by T uUv on the developing image in RP 2. As in Gluing Lemma,
there is a corresponding convex RP 2-manifold (M |C)/f(u, v) representing
a point Ψ(u,v)(M) in B(S). This action generalizes the Fenchel-Nilsen twist
flows on the Teichmueller space.

MainTheorem. (Goldman [3]) Let S be a compact surface having a bound-
ary components such that χ(S) < 0. Then B(S) is diffeomorphic to a celll of
dimension −8χ(S) and the map which associates to a convex RP 2-structures
neaat ∂M is a fibration of B(S) over an open 2n-cell with fiber an open cell
of dimension −8χ(S)− 2n.

4. Hitchin Component

Hitchin shows that Hom(π, SL(3,R))/SL(3,R) has exactly three con-
nected components:
1. C0, the component containing the class of the trivial representation;
2. C1, the component consisting of classes of representatons which do not
lift to the double covering of PGL(3,R);
3. C2, the component containing faithful representations into SO(2, 1).

In particaular, the component C2 contais the Teichmueller space of S.
From our exercise, we know the holonomy map hol maps B(S) bijectively
onto an open subset in C2. Furthermore, Hitchin shows that C2 is homeomor-
phic to R16(g−1). This naturally let Hitchin to conjecture that C2 = B(S).

Theorem 4.1. (Choi and Goldman [2]) B(S) is closed in C2. Hence C2 =
B(S).

Part II: Correspondence of B(S) and spaces of pairs (Σ, U)

From now on, let S and M be a closed orientable surface of genus g. Our
goal is to show the following theorem.

MainTheorem. (Loftin [5], Labourie [4]) There exists a natural bijective
correspondence betwen convex RP 2-structures on S and pairs (Σ, U), where
Σ is a Riemann surface homeomorphic to S, and U is a holomorphic cubic
differential on Σ.

Benoist and Hulin in [1] generalize the above result to the case when S is
not necessarily closed stated as follows.

Theorem 4.2. (Theorem 1.1 in [1]) Let S be an oriented surface with non-
abelian fundamental group. The map A → (J, U) is a bijection between:
1. the set of properly convex projective structures A on s with finite Finster
volume;
2. the set of hyperbolic Riemann surface structures J on S with finite volume
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together with a holomorphic cubic differential U on (S, J) with poles of order
at most 2 at the cusps.

5. Hyperbolic Affine Sphere

This section is mainly copied from Loftin [5].
Consider a hypersurface immersion f : H → R3, and consider a transversal
vector field ξ on the hypersurface H. We have the equations:

DXf∗(Y ) = f∗(∇XY ) + h(X,Y )ξ

DXξ = −f∗(SX) + β(X)ξ.

Here, X and Y are tangent vectors on H, the operator D is the canonical
flat connection induced from R3, the operator ∇ is a torsion-free connec-
tion, the form h is a symmetric bilinear form on Tx(H), the map S is an
endormorphism of Tx(M), and β is a one-form.

For the case the hypersurface H is strictly convex and ξ is the affine
normal (see definiton in page 8 in [5]), the structure equations for H become

DXf∗(Y ) = f∗(∇XY ) + g(X,Y )ξ

DXξ = −f∗(SX).

The connection ∇ is callled the Blaschke connection. The bilinear form h is
called the affine metric (since H is strictly convex)and the endormorphism
S is called the affine shape operator.

Definition 4. An affine sphere is a hypersurface H in R3 all of whose affine
normals point toward a given point in RP 2, the center of the affine sphere, in
this case S = LI, where the affine mean curvature L is a constant function
on H and I is the identity map. If the center lies on the concave side of H, it
is called a hyperbolic affine sphere, corresponding to the case L is negative.

Thus by scaling, we can normalize any hyperbolic affine sphere to have
L = −1. Also, we can translate so that the center is 0. Then the affine
normal ξ = f , where f is the embedding of H into R3. The structure
equations then become

DXf∗(Y ) = f∗(∇XY ) + g(X,Y )f

DXf = f∗(X).
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Proposition 5.1. Consider a convex, bounded domain Ω ⊂ R2, where R2 is
embedded in R3 as the affine space x3 = 1. Then, there is a unique properly
embedded hyperbolic affne sphere H ⊂ R3 of affine mean curvatuer -1 and
center 0 asymptotic to the boundary of the cone C(Ω) ⊂ R3.

Proposition 5.2. Each convex RP 2-structure on M corresponds to an
affine sphere structure on M(i.e., M can be realized as a quotient of a byper-
bolic affine sphere with center 0 and affine mean curvature -1 in the cone
C.) vice versa.

Now we make use of the affine sphere structures to get the correspon-
dence.

6. How to get a holomorphic cubic differential

This section is mainly copied from Loftin [6].
To get a holomorphic cubic differential from this construction, we begin
to work with complexified tangent vectors, and we extend ∇, h and D by
complex linearity. Consider a local conformal coordinate z = x+ iy on the
hyperbolic affine sphere with center the origin and affine curvature -1. Then
the affine metric is given by g = eψ|dz|2 for some function ψ. Parametrize
the surface by

(6.1) f : D → R3,

with D a domain in C. Then we have the following structure equations for
the affine sphere:

DXY = ∇XY + g(X,Y )f

DXf = X

Here D is the canonical flat connection on R3, ∇ is a projectively flat con-
nection, and g is the affine metric. Consider the complexified frame for the
tangent bundle to the surface given by {e1 = fz = f∗(

∂
∂z ), e1 = fz = f∗(

∂
∂z )}.

Then we have

g(fz, fz) = g(fz, fz) = 0, g(fz, fz) =
1

2
eψ.

Consider θ̂, θ the matrix of connection one-forms for the Levi-Civita connec-
tion, Blaschke connection respectively. By the above equation,

θ̂1
1

= θ̂11 = 0, θ̂11 = ∂ψ, θ̂1
1

= ∂ψ.

The difference θ̂ − θ is given by the Pick form J . We have

θ̂ji − θ
j
i = Cjikρ

k,

where {ρ1 = dz, ρ1 = dz} is the dual frame of one-forms. With the property
of the affine normal ξ such that det(fz, fz, ξ) = 1

2 ie
φ and the totally symme-

try of Cijk in affine differential geometry ( where Cijk = C lijglk, i.e., lower

index), this determines θ:
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(
θ11 θ1

1

θ11 θ1
1

)
=

(
∂ψ C1

11
dz

C1
11dz ∂ψ

)
=

(
∂ψ Ue−ψdz

Ue−ψdz ∂ψ

)
,

where we define U = C1
11e

ψ.
Recall that D is the canonical flat connection induced from R3. We get

the structure equations

fzz = ψzfz + Ue−ψfz

fzz = Ue−ψfz + ψzfz

fzz =
1

2
eψf

Then, these three equations form a linear first-order system of partial
differential equations in f, fz, fz, where we may write as

∂
∂z

 f
fz
fz

 =

 0 1 0
0 ψz Ue−ψ

1
2e
ψ 0 0

 f
fz
fz

,

∂
∂z

 f
fz
fz

 =

 0 0 1
1
2e
ψ 0 0

0 Ue−ψ ψz

 f
fz
fz

.

In order to have a solution of the system, the only condition is that mixed
partials must commute (by the Frobenius theorem). Thus we require the
two conditions

ψzz + UUe−2ψ − 1

2
eψ = 0,

Uz = 0.

By the above argument, we actually construct a map from the space of
convex RP 2-structures on S to the space of pairs (Σ, U). The converse
direction is mainly by showing the existence and uniqueness of solutions to
the above elliptic equation for a given pair (Σ, U). Combining these two
directions together, we obtain the following main theorem.

MainTheorem. (Loftin [5], Labourie [4]) Let S be a compact oriented sur-
face of genus g > 1. There exists a natural bijective correspondence betwen
convex RP 2-structures on S and pairs (Σ, U), where Σ is a Riemann surface
homeomorphic to S, and U is a holomorphic cubic differential on Σ.
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A GEOMETRIC DESCRIPTION OF THE PSL4(R)-HITCHIN
COMPONENT

SAMUEL A. BALLAS

Abstract. These notes form a rough outline of the correspondence between the PSL4(R)-
Hitchin component and convex foliated projective structures from [3].

1. Introduction

Let Σ be an orientable hyperbolic surface. The Teichmüller space of Σ, denoted
T 2(Σ), consists of conjugacy classes of discrete and faithful representations from Γ := π1(Σ)
into PSL2(R). This set is well known to have the topology of a ball of dimension 3 |χ(Σ)|.
There is a well known unique irreducible representation, ρn, from PSL2(R) into PSLn(R)
coming from the natural action of PSL2(R) on the symmetric product, Symn−1(R2) ∼= Rn.
In his article [6], Hitchin showed that the the component of the space of conjugacy classes,
X(Γ,PSLn(R)), containing the image of T 2(Σ) under ρn is also a ball of dimension (n2 −
1) |χ(Σ)|. This component is typically referred to as the Hitchin component and we will
denote it as T n(Σ).

For small values of n these Hitchin component can be thought of as moduli spaces
of geometric structures on manifolds. For n = 2, the Hitchin component is the same as
Teichmüller space which allows us to identify T 2(Σ) with the space of marked hyperbolic
structures on Σ. More specifically, let [ρ] ∈ T 2(Σ). Since PSL2(R) can be identified with
the orientation preserving isometry group of H2 we can identify the quotient H2/ρ(Γ) ∼= Σ,
thus giving a marked hyperbolic structure on Σ. Conversely, the holonomy representation of
any hyperbolic structure is a discrete and faithful representation from Γ into PSL2(R), and
equivalent marked hyperbolic structures have conjugate holonomy.

When n = 3, work of Goldman [2] and Goldman-Choi [1] show that the space T 3(Σ)
can be identified with the moduli space of marked convex projective structures on Σ. Roughly
speaking, a convex projective structure on Σ is a realization of Σ as Ω/ρ(Γ), where Ω is a
convex set that sits inside of an affine patch (see Exercise 1) of RP2 and ρ : Γ→ PSL3(R) is
a discrete and faithful representation. For example, when ρ factors through PSL2(R) the set
Ω can be taken to be the unit disk in R2 ⊂ RP2 (See Exercise 2). While it is easy to associate
a conjugacy class of discrete faithful representations with a marked projective structure, it is
much more difficult to start with a representation and find an appropriate convex projective
structure.

Exercise 1. Let RPn be the quotient of Rn+1\{0} by the action of R× by scaling and
let H be a hyperplane RPn. RPn\H is called an affine patch. The purpose of this
exercise is to justify this terminology.

(1) Show that an affine patch can be identified with the affine space Rn.
1
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(2) Show that the subgroup PGLn+1(R) consisting of elements that preserve H is equiv-
ariantly isomorphic (with respect to the identification from part (1)) to the affine
group of matrices of the form (

A b
0 1

)
,

where A ∈ GLn(R) and b ∈ Rn.

Exercise 2. Let 〈x, y〉 = x1y1 + x2y2− x3y3 be the standard bilinear form of signature (2, 1)
on R3. Let C = {x ∈ R3|〈x, x〉 < 0} be the cone of vectors with negative self pairing. The
image, P (C), of C in RP2 serves as a model for H2.

(1) Let H be the image of the x1x2−plane in RP2. Show that in the affine patch defined
by H that P (C) can be identified with the unit disk. This model is know as the Klein
Model

(2) Let K be the image of the plane x3 − x2 = 0 in RP2. Show that in the affine patch
defined by that P (C) can be identified with the set v > u2. (Hint, use coordinates
u = x1, v = x3 + x2, w = x3 − x2 and use inhomogeneous coordinates w = 1). This
model is known as the paraboloid model.

Our goal in this lecture to explain a correspondence between the space T 4(Σ) and
certain types of projective structures on the unit tangent bundle, SΣ, of Σ. This result is
originally due to Guichard and Wienhard [3]. The rough idea is that there is an R action
on SΣ given by the geodesic flow. This flow gives rise to a pair of foliations, F and G,
which are referred to as the stable foliation and geodesic foliation, respectively. We will show
that representations in T 4(Σ) correspond to projective structures in which these foliations
can be realized in a geometrically meaningful way inside of RP3. When [ρ] ∈ T 4(Σ) factors
through PSL2(R) then we can regard these projective structures as projective realizations of

the familiar S̃L2(R) structures on these manifolds.

2. SΣ and the Geodesic Flow

In this section we will discuss important properties of M := SΣ and the action of the
geodesic flow. Let Γ = π1(M), then Γ is a central (non-split) extension of Γ that fits into
the following short exact sequence.

(2.1) 0→ Z→ Γ→ Γ→ 1.

The manifold M has an important regular cover, M , corresponding from the Z subgroup in
(2.1). Furthermore, the foliations F and G lift to foliations F and G of M . The foliations
F and G can also be lifted to the universal cover, M̃ . These lifts will be denoted F̃ and G̃,
respectively. We now give two descriptions of M .

Let [ρ] ∈ T 2(Σ) be a (conjugacy class of) representation. Choose and identification of
Σ̃ with H2 that is equivariant with respect to ρ, such an identification is called a uniformiza-
tion. The uniformization allows us to equivariantly identify M with the unit tangent bundle
SH2. With this in mind we can think of a leaf of G as an oriented geodesic in H2 and a leaf
of F as the union of all oriented geodesics with a common positive endpoint on ∂H2. Since
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Figure 1. The identification between M and ∂Γ3+. Picture from [3]

PSL2(R) acts simply transitively on SH2 we can further identify M with PSL2(R). Under
this identification we see that M = ρ(Γ)\PSL2(R). Additionally, if we let

A =

{(
et/2 0
0 e−t/2

)}
, and P =

{(
a b
0 1/a

)}
,

be Cartan and parabolic subgroups of PSL2(R), then the leaves of the geodesic and stable
foliations can be identified with right orbits of A and P , respectively.

The uniformization also allows us to identify the boundary of Γ, ∂Γ, with ∂H2 ∼= RP1.
Furthermore, this identification gives an action of Γ on ∂Γ that is ρ-equivariant. This
boundary gives us another way to describe M , F , and G. ∂Γ inherits an orientation coming
from the orientation on H2 and we can identify M with the set ∂Γ3+ of pairwise distinct,
positively oriented triples of points in ∂Γ. To see this observe that a point of M can be
thought of as an oriented geodesic, L, in H2 and a point, x, on L. Such a point can
be identified with (t+, t0, t−), where t+ and t− are the positive and negative endpoints of
L, respectively, and t0 is the endpoint of the geodesic that intersects L perpendicularly
and passes through x and makes the above triple positively oriented (see Figure 1). This
identification is also equivariant with respect to the action of Γ and allows us to identify F
with ∂Γ and G with ∂Γ(2) := ∂Γ2\∆.

3. Convex Foliated Projective Structures

In this section we describe the geometric structures whose moduli space T 4(Σ) de-
scribes. We begin with a description of projective structures. Roughly speaking, a projective
structure on a manifold is a way to locally identify the manifold with RPn in such a way
that the transition functions are locally elements of PGLn+1(R). As such projective struc-
tures can be described in terms of atlases of charts. However, we will take a more global
(but equivalent) point of view in our definition. Let N be an n−manifold. A projective
structure consists of a pair (dev, hol), where hol : π1(N) → PGLn+1(R) is a representation
and dev is a hol−equivariant local homeomorphism from Ñ to RPn. Furthermore, we say
that (dev1, hol1) and (dev2, hol2) are equivalent projective structures on N if there exists a
homeomorphism h : N → N that is isotopic to the identity and an element g ∈ PGLn+1(R)
such that
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• dev1 ◦ h̃ = g ◦ dev2, where h̃ is a lift of h to Ñ , and
• hol2 = g−1hol1g.

Let P(N) be the set of equivalence classes of projective structures onN . The above discussion
shows that we have a map

hol : P(N)→ X(π1(N),PGLn+1(R)).

The map dev is called the developing map of the structure and the representation hol is
called the holonomy of the structure.

As we mentioned before we are interested in projective structures that play well with
the foliations coming from the geodesic flow. With this in mind, we say that a projective
structure, (dev, hol), on M is foliated if the following conditions are satisfied.

• For each leaf g̃ ∈ G̃, dev(g̃) is contained in a projective line, and

• For each leaf f̃ ∈ F̃ , dev(f̃) is contained in a projective plane.

Two foliated projective structures are equivalent if they are equivalent as projective
structures and the map h : M → M preserves the foliations F and G. We denote the set
of equivalence classes of foliated projective structures by Pf (M). We now further refine this
notion in order to arrive at the correct geometric structures. Let C ⊂ RPn, then C is convex
if its intersection with every projective line is connected. If C is a convex subset of RPn then
C is properly convex if its closure does not contain a affine line.

Exercise 3. Show that a subset of RPn is properly convex if and only if its closure is con-
tained in an affine patch.

We can now define the appropriate projective structures. We say that a foliated
projective structure on M is convex if the image of each leaf of F̃ under the developing
map is a convex set of a projective plane. Additionally, we define a properly convex foliated
projective structure on M to be a foliated projective structure for which the image of each
leaf of F̃ is mapped to a properly convex subset of a projective plane by the developing map.
Let Ppcf (M) subset of Pf (M) consisting of equivalence classes of properly convex foliated
projective structures.

We can now rephrase the correspondence between T 4(Σ) and projective structures
in more precise terms. Let p : Γ → Γ be the projection implicit in (2.1). The map p gives
an embedding of T 4(Σ) ⊂ X(Γ,PSL4(R)) ⊂ X(Γ,PSL4(R)), and the correspondence can be
succinctly stated as

Proposition 3.1. The map hol is a homeomorphism between Ppcf (M) and T 4(Σ).

Remark 3.2. Since Γ has trivial center (2.1) implies that the center of Γ is cyclic, and we
denote its generator by τ . The above correspondence implies that the holonomy of a properly
convex foliated projective structure on M factors through p and thus every such holonomy
kills τ .

4. Examples and Ideas

In this section we will discuss certain examples of properly convex foliated projective
structures on M and discuss some of the ideas required to prove Proposition 3.1. Let
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[ρ] ∈ T 2(Σ), then we can define an element of Ppcf (M) as follows. Let [Q] ∈ RP3, where
Q = x(x2 + y2) (here we are using the fact that R4 ∼= Sym3(R2)). Using the fact that M ∼=
PSL2(R) we can define a projective structure by letting dev1 be the map g 7→ ρ4(ρ(g)) · [Q],
where g ∈ PSL2(R) and letting hol = ρ4 ◦ρ. The vector Q = (1, 0, 1, 0) in the standard basis
for Sym3(R2) and so

(
et/2 0
0 e−t/2

)
7→


e3t/2 0 0 0

0 et/2 0 0
0 0 e−t/2 0
0 0 0 e−3t/2




1
0
1
0

 =


e3t/t

0
e−t/2

0

 =


e2t

0
1
0

 ,

and (
a b
0 1/a

)
7→


a3 a2b ab2 b3

0 a 2b 3b2/a
0 0 1/a 3b/a2

0 0 0 1/a3




1
0
1
0

 =


a3 + ab2

2b
1/a
0

 =


a2(a2 + b2)

2ab
1
0

 .

Under the coordinate change v = a2(a2 + b2), u = 2ab, we see that the above image can be
identified with v > u2/4, and is thus properly convex (See Exercise 3). In fact, this set can
be identified with H2 (see Exercise 2). Thus we see that this projective structure is properly
convex foliated.

Despite knowing that these structures are properly convex foliated, we do not have a
very good idea of what they look like globally. In order to get a more global picture we will
try to understand the developing map in terms of the description of M as ∂Γ3+. Let V be a
vector space and let Flag(V ) denote the flag variety of V . If we think of R2 as Sym1(R2), then
the Veronese embedding gives the following equivariant curve ξ : ∂Γ ∼= RP1 → Flag(R4).
Given by ξ = (ξ1, ξ2, ξ3), where

• ξ1([S]) is the line of polynomials divisible by S3,
• ξ2([S]) is the plane of polynomials divisible by S2, and
• ξ3([S]) is the hyperplane of polynomials divisible by S.

If we let Ωξ be the set of polynomials in RP3 with a single real root (i.e. they factor over R
into a linear and a quadratic term), then Ωξ is the image of dev.

Exercise 4. Prove that Ωξ is the image of dev, namely that Ωξ is the PSL2(R) orbit of [Q]
under the action g · [R] = ρ4(ρ(g)) · [R].

The map ξ allows us to define a family, ξ1t of equivariant maps from ∂Γ→ RP3, given
by

ξ1t (t
′) =

{
ξ3(t) ∩ ξ2(t′) if t 6= t′

ξ1(t) if t = t′

For each t, the image of ξ1t in ξ3(t) bounds the copy of H2
t given by dev(t) (here we are

thinking of t as a leaf of F). The geodesic leaf g = (t+, t−) is taken to the intersection of

H2
t and the projective line, ξ1(t+)ξ1t+(t−), connecting ξ1(t+) and ξ1t+(t−). The tangent lines

to H2
t at ξ1(t+) and ξ1t+(t−) are ξ2(t+) and ξ3(t+) ∩ ξ3(t−), respectively. Furthermore, these

1Technically, dev is a lift of this map to M̃ .
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Figure 2. The image of the developing map. Picture from [3].

lines intersect in the point ξ3(t−) ∩ ξ2(t+) = ξ1t−(t+). Finally, given t0 different from t+ and

t− there is a unique point of intersection between ξ1(t+)ξ1t+(t−) and ξ1t−(t+)ξ1t+(t0). Thus we

see that in terms of ∂Γ3+ that dev is defined by

(4.1) (t+, t0, t−) 7→ ξ1(t+)ξ1t+(t−) ∩ ξ1t−(t+)ξ1t+(t0).

The discussion of the previous paragraph is illustrated in Figure 2

5. Convex Representations

The proof of Proposition 3.1 relies on the fact that representations in T 4(Σ) can be
characterized by a certain convexity property which we now discuss. Work of Labourie and
Guichard [5, 7] has shown that ρ ∈ T 4(Σ) if and only if ρ is a convex representation. A
representation is convex if we can find a ρ-equivariant curve ξ1 : ∂Γ → RP3 such that for
t1, . . . t4 that are pairwise distinct,

ξ1(t1)⊕ . . .⊕ ξ1(t4) = R4.

A simple exercise shows that a convex curve in RP2 bounds a properly convex set. Addition-
ally, a curve ξ = (ξ1, . . . , ξn−1) : RP1 → Flag(Rn) is called Frenet (this is sometimes known
as hyperconvex) if

(1) For every (n1, . . . , nk) such that
∑k

i=1 ni = n and every t1, . . . , tk ∈ RP1 of pairwise
distinct elements the following sum is direct

k∑
i=1

ξni(xi) = Rn.
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(2) For every (m1, . . . ,mk) with
∑k

i=1mi = m ≤ n and every x ∈ RP1

lim
(xi)→x

k∑
i=1

ξmi(xi) = ξm(x),

where the limit is taken over k−tuples of pairwise distinct points.

It is easy to see that if ξ is Frenet then ξ1 is a convex curve and that ξ1 determines
ξ via the limit condition. By work of Labourie [7] has shown that If a ρ is convex then it is
possible to find a unique ρ-equivariant Frenet curve. Given a non-degenerate bilinear form
on Rn and a curve f = (f 1, . . . , fn−1) : RP1 → Flag(Rn), it is possible to define a dual curve
f⊥ = (fn−1,⊥, . . . , f 1,⊥) : RP1 → Flag(Rn∗). Work of Guichard [4] shows that a curve ξ is
Frenet if and only if ξ⊥ is Frenet. This duality will be crucial in the proof of Proposition 3.1.

5.1. convex implies properly convex foliated. We begin by showing that an element
[ρ] ∈ T 4(Σ) gives rise to a properly convex foliated projective structure on M . By the
previous paragraph we see that ρ is a convex representation and thus we can find a ρ-
equivariant flag curve ξ. We begin by using this curve to define a family of ρ-equivariant
lower dimensional flag curves. Define ξt : RP1 → Flag(ξ3(t)) by

(5.1) ξt(t
′) =

{
(ξ3(t) ∩ ξ2(t′), ξ3(t) ∩ ξ3(t′)) if t 6= t′

(ξ1(t), ξ2(t)) if t = t′

For each t ∈ RP1 the curve ξt is also Frenet. This is proven by showing that ξ⊥t is Frenet
and using the basic fact that if W and V are linear subspace then (V + W )⊥ = V ⊥ ∩W⊥.

For example, to show that ξ⊥t is Frenet one of the things we need to show that (ξ2,⊥t (t1) +

ξ1,⊥t (t2)) = R3 for all distinct pairs t1, t2. To show this we observe that

(ξ2,⊥t (t1)+ξ
1,⊥
t (t2))

⊥ = ξ2t (t1)∩ξ1t (t2) = ξ3(t)∩ξ3(t1)∩ξ2(t2) = (ξ3,⊥(t)+ξ3,⊥(t1)+ξ
2,⊥(t2))

⊥ = {0},

with the last equality coming from the fact that ξ⊥ is Frenet. The other conditions needed
to be verified to show that ξ⊥ is Frenet can all be shown in a similar way. We now define
a developing map using the formula in (4.1). For each t the image of ξ1t bounds is convex
and thus bounds a properly convex subset Ct of ξ3(t). The Frenet properties of ξ this new
developing map has all the same nice properties as the map given to us in the previous
example by the Veronese embedding.

5.2. properly convex foliated implies convex. The more difficult direction is to show
that given a properly convex foliated projective structure on M that the holonomy repre-
sentation is a convex representation. Details can be found in [3] and we simply outline the
key ideas. Suppose that we have such a structure with holonomy ρ. Since we know that the
image of a leaf of F̃ ∼= Γ̃ under the developing map is contained in a projective plane we get
a map2 ξ3 : ∂̃Γ → RP3∗taking t ∈ ∂̃Γ to the projective plane containing dev(t). The first
thing that we have to do is to show that the map ξ3 descends to a map defined on ∂Γ (this

2Here we are implicitly identifying the space of projective planes in RP3 with RP3∗ using a non-degenerate
bilinear form.
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part is highly non-trivial and comprises a good chunk of [3]). We must then show that this
map is convex. Namely that for t1, . . . , t4 pairwise distinct points that

ξ3(t1) + . . .+ ξ3(t4) = R4∗,

or equivalently that

(5.2) ξ3(t1) ∩ . . . ∩ ξ3(t4) = ∅.
The fact that these planes do not have a common intersection can be viewed geomet-

rically. Fix t1, then the fact that the intersection from (5.2) is empty is equivalent to the
three lines lines ξ3(t1) ∩ ξ3(ti), 2 ≤ i ≤ 4, not intersecting. Let Ct1 be the properly convex
set that is the image of the developing map restricted to plane ξ3(t1). Then it can be shown
(with a good deal of work) that the domain Ct is strictly convex (contains no line segments
in its boundary) and that the lines ξ3(t1) ∩ ξ3(ti) for 2 ≤ i ≤ 4 are tangent lines to Ct1 at
distinct points, and thus do not intersect. Try drawing tangents to the domain in Figure 2
to convince yourself that these lines must be disjoint.
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