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Let G be a real, connected, noncompact, semisimple, linear Lie group.
The goal of this talk is to recall the classical notion of a convex cocompact
subgroup of G when G has real rank 1 and to discuss possible generalizations
to higher real rank, following Kleiner–Leeb [KL2] and Quint [Q].
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1. Preliminary notation

In the whole talk, K denotes a maximal compact subgroup of G, so that
X = G/K is the Riemannian symmetric space of G, and A denotes a max-
imal split connected semisimple abelian subgroup of G such that the Car-
tan decomposition G = KAK holds; by definition, the real rank of G is
rankR(G) = dim(A). Consider the decomposition of the Lie algebra g of G
into joint eigenspaces for the adjoint action of A:

(1.1) g = (m + a) + n + n−,

where a is the Lie algebra of A, where m is the Lie algebra of the centralizer of
A inK, and where n (resp. n−) is the sum of the positive (resp. negative) root
spaces with respect to some fixed choice of positive restricted root system.
LetM be the centralizer of A in K, with Lie algebra m, and let N (resp. N−)
be the image of n (resp. n−) under the exponential map exp : g → G. The
group MA is the centralizer ZG(A) of A in G. The groups P := (MA) nN
and P− := (MA)nN− are opposite minimal parabolic subgroups of G, with
respective unipotent radicals N and N−.

Example 1.1. For G = SLm(R), we may take K to be SO(m) and A to be
the group of diagonal matrices in G with positive entries. The Lie algebra
g is the set of traceless m × m real matrices, a is the subset of diagonal
matrices, and m is trivial (G is split). With the usual choice of positive root
system, n (resp. n−) is the set of upper (resp. lower) triangular nilpotent
matrices.
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Example 1.2. ForG = SO(p, q)0, the groupK is isomorphic to SO(p)×SO(q).
Suppose p ≤ q. If we see G as the subgroup of SLp+q(R) preserving the qua-
dratic form

2x1 xp+q + 2x2 xp+q−1 + · · ·+ 2xp xq+1 − x2
p+1 − x2

p+2 − · · · − x2
q ,

then we may take a to be the set of diagonal matrices

diag(t1, . . . , tp, 0, . . . , 0,−tp, . . . ,−t1)

with t1, . . . , tp ∈ R. In this case m is the set of block diagonal matrices
diag(0, D, 0) with D ∈ so(q − p), with the two 0 blocks of size p × p. With
the usual choice of positive restricted root system, n (resp. n−) consists of
strictly upper (resp. lower) triangular block matrices.

na

m

n−

2. Convex cocompactness in real rank 1

2.1. Definitions, examples, and characterizations. In this section we
assume that G has real rank 1. Recall the following classical definition.

Definition 2.1 (rankR(G) = 1). A discrete subgroup Γ ofG (or any injective
representation ρ : Γ0 → G of a discrete group Γ0 into G with image Γ) is said
to be convex cocompact if one of the following equivalent conditions holds:

(1) Γ preserves and acts cocompactly on some nonempty convex subset
C of X = G/K;

(2) Γ acts cocompactly on the closure FΓ of the union of the translation
axes of the hyperbolic elements of Γ in X (in other words, the closure
of the union of all closed geodesics is compact in Γ\X);

(3) the conservative set of the geodesic flow on the unit tangent bundle
T 1(Γ\X) is compact.

By definition, the conservative set of the geodesic flow (ϕt)t∈R is the clo-
sure of the set of vectors v ∈ T 1(Γ\X) such that ϕt(v) returns to a compact
subset of T 1(Γ\X) infinitely often.

Since rankR(G) = 1, the Riemannian symmetric space X is Gromov-
hyperbolic; its visual boundary identifies with G/P . Any nonempty, Γ-inva-
riant, closed, convex subset ofX must contain the convex hull Conv(ΛΓ) ⊂ X
of the limit set ΛΓ ⊂ G/P of Γ, hence (1) is equivalent to the fact that Γ
acts cocompactly on Conv(ΛΓ). The set FΓ is the union of all geodesics of X
with both endpoints in ΛΓ; it is contained in Conv(ΛΓ), so (1) immediately
implies (2). The following classical lemma (see [Gd, Lem. 4] for instance)
explains why (2) implies (1).
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Lemma 2.2. The set Conv(ΛΓ) is contained in a uniform neighborhood of
its subset FΓ.

Convex cocompact groups in real rank 1 include uniform lattices and
Schottky groups (with no parabolic element). Other interesting examples
are given by quasi-Fuchsian representations of surface groups into PSL2(C).

We shall recall a proof of the following well-known lemma.

Lemma 2.3. If rankR(G) = 1, then the following conditions are equivalent:
(i) Γ is convex cocompact,

(ii) Γ is finitely generated and quasi-isometrically embedded in G,
(iii) Γ is Gromov-hyperbolic and there exists a continuous, injective, and

Γ-equivariant map ξ : ∂∞Γ→ G/P = ∂∞X,
(iv) Γ is Gromov-hyperbolic and the natural inclusion of Γ in G is a P -

Anosov representation.

Recall that “Γ quasi-isometrically embedded in G” means that for some
(hence any) finite generating subset S of Γ and some (hence any) G-invariant
Riemannian metric dG on G, there exist c, C > 0 such that for any γ ∈ Γ,

dG(e, γ) ≥ c `S(γ)− C,

where `S : Γ→ N is the word length function with respect to S. We shall re-
call the definition of Anosov representations in Section 2.3 below. The implica-
tion (iv)⇒ (ii) actually holds when G has arbitrary real rank [GW, Th. 5.3].

A proof of Lemma 2.3 will be given in Section 2.4. We first recall an
interpretation of the homogeneous space G/MA.

2.2. The homogeneous space G/MA. When rankR(G) = 1, there are two
G-orbits in G/P ×G/P : a closed one, namely

Diag(G/P ×G/P ) = {(ξ, ξ) : ξ ∈ G/P},

and an open one, namely

(G/P )(2) = (G/P ×G/P ) r Diag(G/P ×G/P ),

which we shall denote by O. If we see G/P as the space of minimal para-
bolic subgroups of G, with the transitive action of G by conjugation, then
(P, P−) ∈ G/P ×G/P belongs to O; its stabilizer is P ∩P− = MA, hence O
identifies with G/MA. We can interpret O as the space of oriented geodesics
of X = G/K, with the two projections of O ⊂ G/P ×G/P onto G/P giving
the two endpoints in ∂∞X. This is known as the Hopf parameterization of
the space of oriented geodesics of X.

When G has arbitrary real rank, G/MA still identifies with the only open
G-orbit in G/P ×G/P ; there may be more than two G-orbits.

2.3. Anosov representations. In this section G can have any real rank.

2.3.1. Exponential expansion and contraction. We shall use the following
classical terminology. Let π : V → M be a vector bundle over a compact
manifoldM. For any m ∈M, choose a norm ‖ · ‖m on the fiber π−1(m) so
that the family (‖ · ‖m)m∈M is continuous.
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Definition 2.4. A flow (ft)t∈R on V is said to exponentially expand (resp.
contract) V if there exist c, C > 0 such that

‖ft · v‖π(ft·v) ≥ C ec|t| ‖v‖π(v)

for all t ≥ 0 (resp. t ≤ 0) and all v ∈ V.

This does not depend on the choice of the continuous family (‖ · ‖m)m∈M,
by compactness ofM.

2.3.2. Anosov representations for fundamental groups of closed, negatively
curved manifolds. Let N be a closed, negatively curved, Riemannian man-
ifold, with universal covering Ñ and fundamental group Γ0. The geodesic
flow (ϕt)t∈R on the unit tangent bundle M := T 1(N ) is an Anosov flow :
there exists a (dϕt)t∈R-invariant splitting

(2.1) TM = D0 ⊕D+ ⊕D−

of the tangent bundle TM into subbundles such that D0 is tangent to the
flow and D+ (resp. D−) is exponentially expanded (resp. exponentially con-
tracted) by (dϕt)t∈R in the sense of Definition 2.4. The notion of Anosov
representation aims to generalize this idea to representations of Γ0 into G.
In order to define it, we first make a few remarks. Let ρ : Γ0 → G be a group
homomorphism.

• The group Γ0 acts on M̂ := T 1(Ñ ) by deck transformations. We denote
by M̂ ×ρ G/MA the quotient of M̂ ×G/MA by the diagonal action

γ · (m̂, gMA) =
(
γ · m̂, ρ(γ)gMA

)
of Γ0. It is a principal bundle overM with fiber G/MA.

• The geodesic flow on M̂, which we also denote by (ϕt)t∈R, lifts to a flow
(ψt)t∈R on M̂ ×G/MA which is trivial on the right factor:

ψt · (m̂, gMA) = (ϕt · m̂, gMA).

Since (ϕt)t∈R commutes with the action of Γ0 on M̂, the flow (ψt)t∈R de-
scends to a flow on M̂ ×ρ G/MA, still denoted (ψt)t∈R, which lifts (ϕt)t∈R.
• Recall from Section 2.2 that the homogeneous space G/MA identifies with
an open subset of G/P ×G/P . This product structure induces a G-invariant
splitting

T (G/MA) = E + ⊕ E −.

In turn, the G-invariant distributions E ± on G/MA determine distributions
F± ⊂ T (M̂ ×ρ G/MA) on M̂ ×ρ G/MA, which are preserved by the flow
(dψt)t∈R.

Definition 2.5 (Labourie [L]). A representation ρ ∈ Hom(Γ0, G) is P -Ano-
sov if there exists a continuous section s of the bundle M̂ ×ρ G/MA→M
which is compatible with the flows (ϕt)t∈R and (ψt)t∈R, in the sense that
s◦ϕt = ψt◦s for all t ∈ R, and such that s∗F+ (resp. s∗F−) is exponentially
expanded (resp. contracted) by (dψt)t∈R.
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Another way to say that s is compatible with the flows (ϕt)t∈R and (ψt)t∈R
is to say that it is flat along the flow lines of (ϕt)t∈R, for the flat connection
on the bundle M̂ ×ρ G/MA → M induced by the flat connection coming
from the product structure on M̂ ×G/MA→ M̂ .

2.3.3. An equivalent definition. A section s of the bundle M̂×ρG/MA→M
determines a unique ρ-equivariant map σ : M̂ → G/MA, and vice versa.
Therefore, Definition 2.5 can be reformulated as follows: a representation
ρ ∈ Hom(Γ0, G) is P -Anosov if and only if there exists a continuous, ρ-
equivariant map σ : M̂ → G/MA with the following properties:

• σ is invariant under (ϕt)t∈R,
• for some (hence any) continuous, ρ-equivariant family (‖ · ‖m̂)

m̂∈M̂,
where ‖·‖m̂ is a norm on Tσ(m̂)(G/MA), there exist c, C > 0 such that

(2.2) ‖w‖ϕt·m̂ ≥ C ec|t| ‖w‖m̂

for all m̂ ∈ M̂ and all (w, t) ∈ (E +
σ(m̂) × R+) ∪ (E −σ(m̂) × R−).

In this case, σ factors through the space M̂/(ϕt)t∈R of oriented geodesics
of Ñ and is unique: any γ ∈ Γ0r{e} has a unique attracting (resp. repelling)
fixed point ξ+

γ (resp. ξ−γ ) in G/P , and σ must send the oriented translation
axis of γ in Ñ to (ξ+

γ , ξ
−
γ ) ∈ G/MA.

2.3.4. A characterization in terms of roots. Here is an equivalent formulation
of (2.2) due to Guichard–Wienhard [GW], which we give in the special case
where rankR(G) = 1. Since A is contractible, by using a partition of unity we
can lift the continuous, ρ-equivariant map σ : M̂ → G/MA to a continuous,
ρ-equivariant map σ′ : M̂ → G/M ; any two such lifts differ by a bounded
amount in any G-invariant Riemannian metric on G/M . Note that A acts on
G/M by right multiplication (becauseM and A commute). For any m̂ ∈ M̂,
there exists a continuous map t 7→ am̂,t ∈ A such that

σ′(ϕt · m̂) = σ′(m̂) am̂,t

for all t ∈ R. The tangent space T (G/M) admits a natural right-A-invariant
splitting

T (G/M) = G 0 ⊕ G + ⊕ G−

into subbundles such that the image of G 0 (resp. G +, resp. G−) under the
projection T (G/M) → T (G/MA) is {0} (resp. E +, resp. E −). To simplify,
suppose that the rank-one group G has only one positive restricted root α
(in general, when G is not split, it can have two positive roots α and 2α).
Then for any a ∈ A, the differential map T (G/M) → T (G/M) of the right
multiplication by a restricts to the trivial map on G 0, to the multiplication by
the scalar α(a) > 0 on G +, and to the multiplication by 1/α(a) on G−. From
this observation (and its variant whenG has two positive roots α and 2α), one
easily deduces that (2.2) is equivalent to the existence of c, C > 0 such that

(2.3) α(am̂,t) ≥ C ect
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for all (m̂, t) ∈ M̂×R+. Note that if m̂ belongs to a periodic orbit of length
T of the geodesic flow (ϕt)t∈R, corresponding to an element γ ∈ Γ0, then

σ′(γ · m̂) = ρ(γ) · σ′(m̂) = σ′(m̂) am̂,T ,

hence ρ(γ) is conjugate in G to an element ofMam̂,T ⊂MA and logα(am̂,T )
is the length in ρ(Γ)\X of the closed orbit corresponding to ρ(γ). A formu-
lation of (2.2) similar to (2.3), but involving more than one root α, holds
when G has arbitrary real rank (see [GW, § 3.3]).

2.3.5. Anosov representations for general Gromov-hyperbolic groups. The def-
inition of Anosov representation has been extended in [GW] to any Gromov-
hyperbolic group Γ0: by [Gr, M], there is a natural action of the group
Γ0×Ro (Z/2Z) on some proper hyperbolic metric space Γ̂0 (the flow space,
replacing M̂ = T 1(Ñ ) in the situation above) such that

• the action of Γ0 × (Z/2Z) on Γ̂0 is isometric;
• every orbit map Γ0 → Γ̂0 is a quasi-isometry; in particular, ∂∞Γ0 '
∂∞Γ̂0;
• the action of R on Γ̂0 is free, and every orbit map R → Γ̂0 is a
quasi-isometric embedding; the induced map Γ̂0/R→ (∂∞Γ̂0)(2) is a
homeomorphism.

A representation ρ : Γ0 → G is said to be P -Anosov if there exists a contin-
uous, ρ-equivariant, R-invariant map σ : Γ̂0 → G/MA and, for any continu-
ous, ρ-equivariant family (‖ · ‖m̂)

m̂∈Γ̂0
of norms on Tσ(m̂)(G/MA), constants

c, C > 0 such that (2.2) holds for all m̂ ∈ Γ̂0 and all (w, t) in E +
σ(m̂) × R+ or

E −σ(m̂) × R−. As above, this is equivalent to the existence of c, C > 0 such

that (2.3) holds for all (m̂, t) ∈ Γ̂0 × R+.

2.4. Proof of Lemma 2.3. The implication (i)⇒ (ii) is immediate: if Γ is
convex cocompact, then it acts cocompactly on Conv(ΛΓ) ⊂ X, hence it is
finitely generated and any orbit map Γ→ X is a quasi-isometric embedding.
On the other hand, any orbit map G → X is a quasi-isometry since K is
compact.

To establish (ii)⇒ (i), it is sufficient to see that if Γ is finitely generated
and quasi-isometrically embedded in G, then for any x ∈ X the set FΓ of
Definition 2.1.(2) is contained in a uniform neighborhood of the Γ-orbit of x.
Choose a finite generating subset S of Γ and let

r = max
s∈S

dX(x, s · x) > 0.

Quasi-isometricity implies the existence of constants c, C > 0 such that for
any γ, γ′ ∈ Γ, there is a (c, C)-quasi-geodesic Gγ,γ′ from γ · x to γ′ · x which
is a concatenation of geodesic segments of length ≤ r with endpoints in Γ ·x.
Since X is Gromov-hyperbolic, there is a constant R > 0 (depending only
on (c, C) and on the hyperbolicity constant of X) such that any point of
the geodesic segment [γ · x, γ′ · x] lies at distance ≤ R from Gγ,γ′ , hence at
distance ≤ R + r from Γ · x. Since ΛΓ is the set of accumulation points of
Γ · x, we obtain that FΓ remains at distance ≤ R+ r from Γ · x by taking a
limit.



CONVEX COCOMPACT GROUPS 7

X

γ ·x γ′ ·x

Gγ,γ′

Figure 1. If Γ is quasi-isometrically embedded in G, then
all geodesics of X with both endpoints in the limit set ΛΓ are
contained in some uniform neighborhood of Γ · x.

For (ii) ⇒ (iii), note that if the natural inclusion of Γ in G is a quasi-
isometric embedding, then so is any orbit map Γ → X by compactness
of K. In particular, Γ is Gromov-hyperbolic and any orbit map induces a
continuous, injective, Γ-equivariant map ξ : ∂∞Γ→ ∂∞X = G/P .

To establish (iii)⇒ (iv), we can use the natural homeomorphisms Γ̂/R '
(∂∞Γ)(2) and (G/P )(2) ' G/MA from Sections 2.2 and 2.3 to obtain, from ξ,
a continuous, Γ-equivariant, R-invariant map

σ : Γ̂ −→ G/MA.

Let σ′ : Γ̂ → G/M be a continuous, Γ-equivariant lift of σ. By Section 2.3,
it is sufficient to prove the existence of constants c, C > 0 such that (2.3)
holds for all m̂ ∈ Γ̂ and t ≥ 0. This follows from the compactness of Γ\Γ̂:
see [GW, Th. 4.11] for details in the case that Γ is Zariski-dense in G. (We
can reduce to the Zariski-dense case by using the general fact [Bo] that a
Zariski-closed subgroup of G is either reductive or contained in a proper
parabolic subgroup of G.)

The implication (iv) ⇒ (ii) is true when G has arbitrary real rank; we
explain it for rankR(G) = 1. (The general proof is similar, using a version
of (2.3) involving more than one root α.) Recall from Section 2.3 that if
(iv) holds, then there exist a continuous, Γ-equivariant, R-invariant map
σ : Γ̂ → G/MA and, for any continuous, Γ-equivariant lift σ′ : Γ̂ → G/M

of σ, constants c, C > 0 such that (2.3) holds for all m̂ ∈ Γ̂ and t ≥ 0.
The condition (2.3) implies that the restriction of σ′ to any periodic R-orbit
is a (c, C ′)-quasi-isometric embedding, for some C ′ > 0 independent of the
R-orbit. On the other hand, the hyperbolicity of Γ̂ implies the existence of
a constant R > 0 with the following property: for any y, y′ ∈ Γ̂, there exist
z, z′ ∈ Γ̂ such that z and z′ belong to the same R-orbit and the distances in Γ̂

between y and z, and between y′ and z′, are ≤ R. Therefore, σ′ : Γ̂→ G/M
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is a quasi-isometric embedding. SinceM is compact, Γ is quasi-isometrically
embedded in G.

3. Generalizations of convex cocompactness to higher rank

We now allow the semisimple group G to have arbitrary real rank. Let G1

(resp. G2) be the product of the simple factors of G of real rank 1 (resp. of
real rank ≥ 2). (Products are in fact almost products, but this is not very
important.) The Riemannian symmetric space X = G/K is the product of
the Riemannian symmetric spaces X1 of G1 and X2 of G2.

Fix a discrete subgroup Γ of G. If H is the Zariski-closure of Γ in G and
R(H) its radical, then the group H/R(H) is semisimple and the image of Γ
in H/R(H) is discrete (see [R, Cor. 8.27]). We may therefore restrict to the
case where Γ is Zariski-dense in G, up to replacing G with a smaller group.

3.1. Generalization of (1). In answer to a question of Corlette from 1994,
Kleiner and Leeb proved that in higher real rank, Definition 2.1.(1) for convex
cocompactness does not give any interesting example of discrete groups apart
from products of uniform lattices and convex cocompact subgroups of rank-
one factors.

Theorem 3.1 (Kleiner–Leeb [KL2]). Let C 6= ∅ be a Γ-invariant, closed,
convex subset of X with Γ\C compact. If Γ is Zariski-dense in G, then C =
C1 ×X2 for some Γ-invariant, closed, convex subset C1 of X1; in particular,
Γ is a product of convex cocompact subgroups of the rank-1 factors of G1 and
of a uniform lattice of G2.

The proof easily reduces to the case that G is simple of real rank ≥ 2.
In this case, Kleiner and Leeb use results from [Be] and [KL1] to prove
that the geometric boundary of C is a top-dimensional subbuilding of the
spherical building at infinity (Tits boundary) of X, which is a closed subset
with respect to the topology of the visual boundary of X. The main step
in [KL2] is then to show that any such subbuilding is either equal to the
full visual boundary of X or contained in the visual boundary of a proper
symmetric subspace of X. This last possibility is ruled out by the Zariski-
density assumption on Γ, and so C = X.

On the other hand, Quint [Q] investigated generalizations of the definitions
(2) and (3) of convex cocompactness from Section 2.1. Before we explain his
work, we recall interpretations of the homogeneous spaces G/P , G/MA, and
G/M in arbitrary real rank.

3.2. The homogeneous spaces G/P , G/MA, and G/M . In real rank 1,
the homogeneous space G/P identifies with the visual boundary of X =
G/K, namely with the set of equivalence classes of geodesic rays of X for
the relation “to be at finite Hausdorff distance”. In higher real rank, the visual
boundary of X is more complicated; its regular part contains infinitely many
copies of G/P . However, we can see G/P as the Furstenberg boundary of X,
which is the set of equivalence classes of Weyl chambers of X for the relation
“to be at finite Hausdorff distance”.

Recall that a maximal flat of X is a flat, totally geodesic subspace of X
that is maximal for inclusion. For instance, the A-orbit of the origin x0 :=
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eK ∈ G/K = X is a maximal flat F0, and the other maximal flats are the G-
translates of F0; they are all isometric to Rn where n = rankR(G) = dimA.
Let A+ be the closed positive Weyl chamber of A corresponding to our choice
of positive restricted root system: by definition, A+ is the subset of A on
which all positive restricted roots take values ≥ 1. A Weyl chamber of X is
a G-translate of A+ · x0 ⊂ X. The Weyl group

W := NG(A)/ZG(A) = NG(A)/MA

(where NG(A) denotes the normalizer of A in G) naturally acts on A; this
induces a faithful action of W on F0 = A · x0, which is generated by the
orthogonal reflections along some hyperplanes H1, . . . ,Hn of F0 bounding
the Weyl chamber A+ · x0.

H1

H2

H1

H2

Figure 2. Weyl chambers in a maximal flat of X for G =
SL3(R) (type A2) and for G = Sp4(R) (type C2).

As in Section 2.2, the homogeneous spaceG/MA identifies with the unique
open G-orbit O in G/P ×G/P . (In higher rank there are more than two G-
orbits.) Pairs of elements of G/P that belong to O are said to be in general
position.

Example 3.2. For G = SLn+1(R), the space G/P identifies with the set of
maximal flags (V1 ⊂ · · · ⊂ Vn) of Rn+1, and the open G-orbit O is the set of
pairs of maximal flags

(ξ, η) =
(
(V1 ⊂ · · · ⊂ Vn) , (V ′1 ⊂ · · · ⊂ V ′n)

)
such that Vi ⊕ V ′n+1−i = Rn+1 for all 1 ≤ i ≤ n. For any (ξ, η) ∈ O we can
find a basis (e1, . . . , en+1) of Rn+1 that is adapted to (ξ, η), in the sense that

ξ =
(
〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en〉

)
,

η =
(
〈en+1〉 ⊂ 〈en, en+1〉 ⊂ · · · ⊂ 〈e2, . . . , en+1〉

)
.

•We shall identify G/P with the set of equivalence classes of Weyl chambers
of X by mapping gP ∈ G/P to g · ξ+

0 for all g ∈ G, where ξ+
0 is the class of

the Weyl chamber A+ · x0 ⊂ F0. (The stabilizer of ξ+
0 in G is P .)

• We shall identify G/MA with the open G-orbit O ⊂ G/P × G/P by
mapping gMA ∈ G/MA to g · (ξ+

0 , ξ
−
0 ) for all g ∈ G, where ξ−0 is the class

of the Weyl chamber (A+)−1 · x0 ⊂ F0. (The element ξ−0 has stabilizer P−

in G, hence (ξ+
0 , ξ

−
0 ) has stabilizer P ∩ P− = MA.)
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• The set G/MA surjects G-equivariantly onto the set of maximal flats of X
by mapping (ξ+

0 , ξ
−
0 ) to F0. The fiber is the Weyl group W , acting on F0 =

A · x0 as above.

G/MA
∼−→ O

fiber W

−� {maximal flats of X}(3.1)

gMA 7−→ g · (ξ+
0 , ξ

−
0 ) 7−→ g · F0

We shall also consider the homogeneous space G/M , which identifies with
the actual set of Weyl chambers of X (not modulo equivalence) with the
natural action of G. When rankR(G) = 1, a Weyl chamber is a geodesic ray,
hence is determined by its endpoint in X and its direction at the endpoint:
in this case, G/M identifies with the unit tangent bundle T 1(X). When
rankR(G) ≥ 2, the space T 1(X) has larger dimension than G/M :

dim(T 1(X)) = 2 dim(X)− 1 = 2 dim(a) + 2 dim(n)− 1,

dim(G/M) = dim(G)− dim(M) = dim(a) + 2 dim(n),

where the right-hand equality in the first (resp. second) line follows from the
Iwasawa decomposition g = k + a + n (resp. from (1.1)). As in Section 2.3,
the group A acts on G/M by right multiplication. When rankR(G) = 1 (i.e.
dim(A) = 1), this is the geodesic flow on T 1(X). In general, the right action
of A on G/M (or on Γ\G/M) is called the Weyl chamber flow.

3.3. Generalization of (2) and (3). Suppose that Γ is Zariski-dense in G.
By work of Benoist [Be], when rankR(G) ≥ 2 there still exists (as in the classi-
cal situation where rankR(G) = 1) a smallest, nonempty, closed, Γ-invariant
subset ΛΓ of G/P , called the limit set of Γ. Explicitly, ΛΓ is the set of points
ξ ∈ G/P such that some sequence (γn)n∈N of elements of Γ “contracts G/P
towards ξ”, in the sense that the push-forward by γn of the K-invariant prob-
ability measure ν on G/P ' K/M converges weakly to the Dirac mass in ξ
(i.e. ν(γ−1

n ·U)→ 1 for any open subset U of G/P containing ξ). Limit sets in
higher real rank were first introduced by Guivarc’h [Gh] for G = SLn+1(R).

Let A+ be the interior of A+ in A (open positive Weyl chamber). An
element g ∈ G is said to be proximal if it is conjugate to an element ofMA+.
In this case, it has a unique attracting fixed point ξ+

g and a unique repelling
fixed point ξ−g in G/P ; these two points are in general position.

Benoist proved that the limit set ΛΓ is in fact the closure in G/P of the
set of fixed points ξ+

γ for proximal γ ∈ Γ [Be, Lem. 3.6.(iii)]. Moreover, the
set (ΛΓ × ΛΓ) ∩ G/MA is the closure in G/MA of the set of pairs (ξ+

γ , ξ
−
γ )

for proximal γ ∈ Γ [Be, Lem. 3.6.(iv)].
We shall consider the following generalization of Definition 2.1.(2) for con-

vex cocompactness:
(2) Γ acts cocompactly on FΓ,

where we define FΓ be the union of all maximal flats of X which are images
of points of (ΛΓ × ΛΓ) ∩ G/MA under (3.1). We shall also consider the
following generalization of Definition 2.1.(3) for convex cocompactness:

(3) the intersection of the a+-conservative and (−a+)-conservative sets
of the Weyl chamber flow on Γ\G/M is compact.



CONVEX COCOMPACT GROUPS 11

Here we set a+ = logA+ ⊂ a and use the following terminology (where ‖·‖ is
any fixed norm on a).

Definition 3.3. Let Ω be an open cone of a. A point x ∈ Γ\G/M is Ω-
conservative if there exists a sequence (an)n∈N of elements of A, tending to
infinity, such that (xan)n∈N is bounded in Γ\G/M and log(an)/‖ log(an)‖
converges to a point of Ω. The Ω-conservative set of the Weyl chamber flow
on Γ\G/M is the closure of the set of Ω-conservative points.

Quint established the following relations between the generalized defini-
tions (1), (2), (3) of convex cocompactness.

Lemma 3.4 (Quint [Q]). In any real rank,

(1) =⇒ (2)⇐⇒ (3).

He also proved that in higher real rank, the definitions (2) and (3) for
convex cocompactness do not give any interesting example of discrete groups
apart from products of uniform lattices and convex cocompact subgroups of
rank-one factors.

Theorem 3.5 (Quint [Q]). If Γ is Zariski-dense and satisfies (2) or (3), then
Γ is a product of convex cocompact subgroups of the rank-1 factors of G1 and
of a uniform lattice of G2; in particular, any nonempty, Γ-invariant, closed,
convex subset C of X is of the form C = C1×X2 for some Γ-invariant closed
convex subset C1 of X1.

In the rest of these notes, we shall explain the essential ideas of the proof
of Lemma 3.4 and Theorem 3.5.

4. Main steps in the proof of Theorem 3.5

4.1. Proof of (2)⇔ (3). Let E′Γ be the (full) preimage of (ΛΓ∩ΛΓ)∩G/MA
in G/M , and let EΓ = Γ\E′Γ ∈ Γ\G/M . In other words,

(4.1) EΓ =
{

ΓgM ∈ Γ\G/M : g · (ξ+
0 , ξ

−
0 ) ∈ ΛΓ × ΛΓ

}
.

By construction, EΓ is closed and right-A-invariant. Note that the image of
E′Γ ⊂ G/M in X = G/K is FΓ. Since the fiber K/M is compact, the com-
pactness of EΓ is equivalent to the cocompactness of the action of Γ on FΓ.

E′Γ⋂ EΓ⋂
G/M

zztt
tt
tt
tt
tt
tt
tt

!!D
DD

DD
DD

DD
DD

D

// Γ\G/M

G/MA X = G/K

(ΛΓ ∩ ΛΓ) ∩G/MA

⋃
FΓ

⋃

The equivalence (2) ⇔ (3) in Lemma 3.4 is an immediate consequence of
this observation and of the following lemma.
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Lemma 4.1 [Q, Cor. 4.2]. In any real rank, EΓ is the intersection of the a+-
conservative and (−a+)-conservative sets of the Weyl chamber flow on Γ\G/M .

Proof. Consider x = ΓgM ∈ Γ\G/M .
If x is a+-conservative, then by definition there exist a sequence (an) ∈ AN

going to infinity, a bounded sequence (κn) ∈ GN, and a sequence (γn) ∈ ΓN,
such that log(an)/‖ log(an)‖ converges to a point of a+ and

g an = γn κn

for all n ∈ N. Up to passing to a subsequence, we may assume that κn → κ
for some κ ∈ G. The subset U0 of G/P consisting of points that are in
general position with ξ−0 is open and dense in G/P . By Remark 4.2 below,
for any ξ ∈ G/P with κ−1 · ξ ∈ U0,

γn · ξ = ganκ
−1
n · ξ −→

n→+∞
g · ξ+

0 ,

and this convergence is uniform on compact sets. Therefore, if ν is the K-
invariant probability measure on G/P , we have ν(γ−1

n · U)→ 1 for any open
subset U of G/P containing g ·ξ+

0 , which means by definition that g ·ξ+
0 ∈ ΛΓ.

Similarly, if x is (−a+)-conservative, then g · ξ−0 ∈ ΛΓ, hence x ∈ EΓ.
Conversely, suppose x ∈ EΓ, i.e. g · (ξ+

0 , ξ
−
0 ) ∈ ΛΓ × ΛΓ. If g · (ξ+

0 , ξ
−
0 ) =

(ξ+
γ , ξ

−
γ ) for some loxodromic element γ ∈ Γ, then g−1γg ∈ Ma for some

a ∈ A+. We have xan = x = xa−n for all n, hence x is both a+-conservative
and (−a+)-conservative. In general, we use the density [Be, Lem. 3.6.(iv)] of
the set of pairs (ξ+

γ , ξ
−
γ ) in (ΛΓ × ΛΓ) ∩G/MA. �

In the proof we have used the following remark.

Remark 4.2. The subset U0 of G/P consisting of points that are in general
position with ξ−0 is the P−-orbit of ξ+

0 . It identifies with P−/(P ∩ P−), or
equivalently with n− endowed with an action of P− whose restriction toMA
is the adjoint action (ξ+

0 ∈ U0 corresponds to 0 ∈ n−). In particular, for any
sequence (an) ∈ AN, if α(an)→ +∞ for all positive restricted roots α, then
an · ξ → ξ+

0 for all ξ ∈ U0, and the convergence is uniform on compact sets.

4.2. Strategy of proof of Theorem 3.5. Note that the Weyl group W =
NG(A)/MA acts on G/MA by multiplication on the right.

Suppose that (2) and (3) are satisfied. Then the right-A-invariant set EΓ

is compact, hence any point of EΓ is Ω-conservative for any open cone Ω
of a. Taking Ω = w · a+ for w ranging over W , applying Lemma 4.1, and
using (4.1), we obtain that ΛΓ is W -stable, in the following sense.

Definition 4.3. A subset Λ of G/P is W -stable if (Λ×Λ)∩G/MA is right-
W -invariant, which means that for any g ∈ G such that g · (ξ+

0 , ξ
−
0 ) ∈ Λ×Λ

we have gw · ξ+
0 ∈ Λ for all w ∈W .

Theorem 3.5 therefore reduces to the following proposition.

Proposition 4.4 [Q, Prop. 3.1]. The only closed, Zariski-dense, W -stable
subset Λ of G/P is G/P .

Quint first establishes Proposition 4.4 in the case that G is simple of real
rank 2, i.e. for restricted root systems of type A2 (e.g. G = SL3(R)), of type
B2 = C2 (e.g. G = Sp4(R)), and of type G2. This relies on a combinatorial
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argument, which we give in Section 5 for G = SL3(R). He then reduces the
general case to the rank-2 case, as we explain for G = SLn(R) in Section 6.

5. Proof of Proposition 4.4 for G = SL3(R)

In this section we take G = SL3(R) and see G/P as the set of pairs (p, `)
where p is a point of RP2 and ` ⊂ RP2 a projective line containing p.

Let Λ be a closed, Zariski-dense, W -stable subset of G/P . We denote by
Λ0 (resp. Λ1) the projection of Λ to the set of points (resp. projective lines)
of RP2; it is Zariski-dense in RP2 (resp. in the space of projective lines of
RP2) since Λ is Zariski-dense in G/P .

For any projective line ` ⊂ RP2 and any point q ∈ RP2 r `, we call
projection from q onto ` the map from RP2r{q} to ` that sends any projective
line through q (minus {q}) to its intersection point with `.

5.1. Preliminary remarks. Before we prove Proposition 4.4, we make a
few useful observations leading to a reduction of the proposition.

(i) The W -stability of Λ means that the six flags determined by any pair of
elements of Λ all belong to Λ (see Figure 3).

p1

p2
p3

`1

`2

`3

Figure 3. If (p1, `1) and (p2, `2) belong to the W -stable
set Λ, then so do (p1, `3), (p2, `1), (p3, `2), and (p3, `3).

In particular, for any `1 6= `2 in Λ1 the intersection `1 ∩ `2 belongs to Λ0,
for any p1 6= p2 in Λ0 the projective line through p1 and p2 belongs to Λ1,
and the projection from a point q ∈ Λ0 onto a line ` ∈ Λ1 disjoint from q
preserves Λ0.

(ii) This implies that for any ` ∈ Λ1 the set `∩Λ0 is Zariski-dense in `, and
for any p ∈ Λ0 the set of projective lines of Λ1 through p is Zariski-dense in
the set of projective lines of RP2 through p.

Indeed, for the first statement, fix ` ∈ Λ1 and choose an arbitrary point
q ∈ Λ0 r `. By (i), the projection from q onto ` maps the Zariski-dense
subset Λ0 r{q} of RP2 to Λ0∩ `. Therefore, Λ0∩ ` is Zariski-dense in `. The
second statement is similar.

(iii) In order to establish Proposition 4.4 for G = SL3(R), it is sufficient to
prove the following.
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Claim 5.1. Any line ` ∈ Λ1 is contained in Λ0, and any projective line
through a point p ∈ Λ0 belongs to Λ1.

Indeed, consider (p, `) ∈ G/P . Since Λ is Zariski-dense in G/P , we can
find an element (p′, `′) ∈ Λ in general position with (p, `). Claim 5.1 gives
successively that (`∩ `′) ∈ Λ0, that ` ∈ Λ1, and that p ∈ Λ0. In other words,
there exist a projective line `1 through p and a point p2 ∈ ` such that (p, `1)
and (p2, `) belong to Λ. Then (p, `) ∈ Λ by (i).

5.2. Reduction to a rank-1 result. In order to prove Claim 5.1, we can
reduce to real rank 1 and use the following lemma.

Lemma 5.2 [Q, Prop. 2.1]. Suppose G has real rank 1 and let Λ be a Zariski-
dense subset of G/P with the following property: for any ξ ∈ Λ the group of
unipotent elements u ∈ G such that u · ξ = ξ and u · Λ = Λ acts transitively
on Λ r {ξ}. Then Λ = G/P .

Indeed, suppose that Lemma 5.2 is proved and consider ` ∈ Λ1 and p ∈ `.
By Lemma 5.2, in order to prove that p ∈ Λ0, it is sufficient to see that the
set of projective transformations u of ` that preserve Λ0∩ ` and admit p as a
unique fixed point, acts transitively on (Λ0∩`)r{p}. (Such transformations
correspond to unipotent elements of the stabilizer of `, which is isomorphic
to SL2(R).) To see this, consider p1 6= p2 in (Λ0 ∩ `) r {p}.
• By (ii), there exist two distinct lines `1, `2 ∈ Λ1 through p, different from `.
• By (ii) again, there exist p3 6= p in `1 ∩Λ0. Let us denote by p4 (resp. p5)
the image of p1 (resp. p2) under the projection from p3 onto `2 (see Figure 4).
• By (i), the points p4 and p5 belong to Λ0.
• By (i) again, the projection projp4,`1 from p4 onto `1 preserves Λ0, and so
does the projection projp5,` from p5 onto `. In particular, the map

u := projp5,` ◦ projp4,`1 ,

which preserves `, also preserves Λ0 ∩ `. It maps p1 to p2 and admits p
as a unique fixed point. This completes the proof of Claim 5.1, hence of
Proposition 4.4 for G = SL3(R).

5.3. Proof of Lemma 5.2. We may assume that G is connected. Let S be
the stabilizer of Λ in G; it is a closed subgroup of G.
• S is Zariski-dense in G. Indeed, let H be the identity component (for
the real topology) of the Zariski closure of G. The flag variety of H is a
Zariski-closed subset of G/P ; by assumption, it contains the Zariski-dense
set Λ, hence it is equal to G/P . This implies H = G.
• S is not discrete in G. Indeed, since Λ is infinite and G/P is compact,
Λ admits a nonisolated point η: there exists a sequence (ηn)n∈N of pairwise
distinct points of Λ converging to η. By assumption, for any n there exists a
unipotent element un ∈ S such that un · ξ = ξ and un ·η = ηn. The sequence
(un)n∈N converges to 1, hence S is not discrete.

This implies that S = G (a Zariski-dense subgroup of a connected semisim-
ple Lie group is either discrete or dense), and so Λ = G/P .
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p

p1

p2

p3

p4

p5

p′
u(p′)

`

`1

`2

Figure 4. Construction of a unipotent transformation u.

6. Reducing to rank-2 groups in Proposition 4.4

To simplify notation and make the proof more concrete, we suppose that
G = SLn+1(R), that A is the subgroup of diagonal matrices with positive
entries, and that P is the group of upper triangular matrices (Example 1.1).
The space G/P identifies with the set of maximal flags

(V1 ⊂ · · · ⊂ Vn)

of Rn+1 (Example 3.2). Let αi = εi − εi+1, for 1 ≤ i ≤ n, be the stan-
dard simple roots of A in G. For any i, let Pi be the parabolic subgroup
of G associated with {αi}, consisting of upper triangular block matrices with
square diagonal blocks of size 1, . . . , 1, 2, 1, . . . , 1, where 2 is the i-th entry.
For ξ = g · ξ+

0 ∈ G/P , we set

P ξi = gPig
−1.

Let Λ be a closed, Zariski-dense, W -stable subset of G/P . To show that
Λ = G/P , we first note that for any ξ, η ∈ G/P in general position, there is
a finite sequence

ξ = ξ1, ξ2, . . . , ξk+1 = η

of elements of G/P such that for any 1 ≤ j ≤ k we have ξj+1 ∈ P
ξj
ij
· ξj for

some 1 ≤ ij ≤ n. Indeed, write the longest element

w0 : (1, . . . , n+ 1) 7−→ (n+ 1, . . . , 1)
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of the Weyl group W ' Sn+1 as a product τ1 . . . τk of transpositions τj :
(ij , ij + 1) 7→ (ij + 1, ij); if (ξ, η) = g · (ξ+

0 , ξ
−
0 ), then we may take

ξj+1 := gτ1 . . . τj · ξ+
0

for all j. By induction, it is sufficient to prove that if ξj ∈ Λ, then ξj+1 ∈ Λ.
Let us prove a stronger statement, namely that for any ξ ∈ Λ and any

1 ≤ i ≤ n− 1 we have Qξi · ξ ⊂ Λ, where Qξi is the parabolic subgroup of G
generated by P ξi and P ξi+1. To simplify notation, we assume that ξ = ξ+

0

(the proof for general ξ is similar). The group Qi := Q
ξ+0
i admits a Levi

decomposition
Qi = Zi Si n RadU,i,

where RadU,i ⊂ N is the unipotent radical of Qi (i.e. the largest connected
normal unipotent subgroup), Zi ⊂ A is the center of Qi (consisting of diago-
nal matrices whose i-th, (i+1)-th, and (i+2)-th entries are equal), and Si is
a semisimple Lie group (isomorphic to SL3(R)). The orbit Qi · ξ+

0 identifies
with Qi/(P ∩Qi) and, seen as an Si-homogeneous space, with Si/(P ∩ Si),
which is the flag variety of Si ' SL3(R).

qi

radU,i

zi

si

In order to prove that Qi · ξ+
0 ⊂ Λ, assuming ξ+

0 ∈ Λ, it is enough (by the
rank-2 case of Proposition 4.4 treated in Section 5) to prove the following.

Claim 6.1. The set Λ ∩ (Qi · ξ+
0 ), seen as a subset of the flag variety of Si,

is closed, Zariski-dense, and stable under the Weyl group of Si.

Proof. Let pr1 : G/MA ' O ⊂ G/P ×G/P → G/P be the projection onto
the first factor and let wi ∈ W ' Sn+1 be the transposition (i, i + 2) 7→
(i + 2, i). Recall that the Weyl group W = NG(A)/MA acts on G/MA on
the right. For any ξ ∈ G/P , let Uξ be the (Zariski-dense) set of elements of
G/P that are in general position with ξ. We define a map πξi : Uξ → G/P by

(6.1) πξi (η) = pr1

(
(ξ, η) · wi

)
for all η ∈ Uξ. Concretely, if (e1, . . . , en+1) is a basis of Rn+1 adapted to (ξ, η)
(see Example 3.2), then

(6.2) πξi (η) =
(
V1 ⊂ · · · ⊂ Vi−1 ⊂ V ′i ⊂ V ′i+1 ⊂ Vi+2 ⊂ · · · ⊂ Vn

)
where ξ = (V1 ⊂ · · · ⊂ Vn) and

(6.3) V ′i := Vi−1 + R ei+2, V ′i+1 := Vi−1 + R ei+1 + R ei+2.
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We now restrict to ξ ∈ Qi ·ξ+
0 . From (6.2) and (6.3) we see that the set πξi (Uξ)

is contained in Qξi · ξ = Qi · ξ+
0 , and in fact identifies with the set of elements

of Si/(P ∩Si) that are in general position with the image of ξ; in particular,
πξi (Uξ) is Zariski-dense in Qi · ξ+

0 ' Si/(P ∩ Si). From (6.1) we see that:

• πξi is an algebraic homomorphism; in particular, since Λ ∩ Uξ is
Zariski-dense in Uξ, the set πξi (Λ ∩ Uξ) is Zariski-dense in πξi (Uξ),
hence in Qi · ξ+

0 ;
• if ξ ∈ Λ, then πξi (Λ ∩ Uξ) ⊂ Λ since Λ is W -stable.

Therefore, the set Λ∩ (Qi · ξ+
0 ) is Zariski-dense in Qi · ξ+

0 . Let us prove that
it is Wi-stable as a subset of Si/(P ∩ Si), where

Wi = NSi(A ∩ Si)/ZSi(A ∩ Si)

is the Weyl group of Si, which embeds in W as the subgroup generated by
the transpositions (i, i + 1) 7→ (i + 1, i) and (i + 1, i + 2) 7→ (i + 2, i + 1).
From (6.1) and the W -stability of Λ we see that for any ξ ∈ Λ∩ (Qi ·ξ+

0 ) and
any η ∈ Λ ∩ Uξ we have (ξ, πξi (η)) · w′i ∈ Λ × Λ for all w′i ∈ Wi. Therefore,
it is sufficient to prove that for any pair (ξ, ζ) of points of Λ∩ (Qi · ξ+

0 ) that
are in general position in Qi · ξ+

0 ' Si/(P ∩ Si), we can write ζ = πξi (η) for
some η ∈ Λ∩Uξ. Fix such a pair (ξ, ζ) and consider a point τ ∈ Λ∩Uξ ∩Uζ ;
then we may take η := πτn−i(ζ). �

7. Proof of (1)⇒ (2) in Lemma 3.4

In order to prove that (1) implies (2), it is sufficient to check the following.

Lemma 7.1 [Q, Lem. 5.4]. The set FΓ is contained in any nonempty, Γ-
invariant, closed, convex subset C of X = G/K.

Recall from Section 3.3 that FΓ is the set of maximal flats ofX correspond-
ing to elements of (ΛΓ × ΛΓ) ∩G/MA under (3.1). For (ξ, η) ∈ G/MA, we
shall denote by F(ξ, η) the corresponding maximal flat of X.

Recall that any element of G admits a Jordan decomposition: g = ghgegu
for some unique commuting elements gh, ge, gu ∈ G with gh hyperbolic (i.e.
conjugate to an element ag ∈ A+), with ge elliptic (i.e. conjugate to an ele-
ment ofM), and with gu unipotent. We denote by λ : G→ a+ := logA+ the
Lyapunov projection of G, defined by λ(g) = log ag for all g. By definition,
the limit cone LΓ is the smallest closed cone of a+ containing λ(Γ). Benoist
[Be] proved that if Γ is Zariski-dense in G, then LΓ is convex with nonempty
interior.

Sketch of proof of Lemma 7.1. The set of pairs (ξ+
γ , ξ

−
γ ) for loxodromic γ ∈ Γ

is dense in (ΛΓ × ΛΓ) ∩ G/MA [Be, Lem. 3.6.(iv)]. Therefore, by convexity
of C, it is sufficient to prove that F(ξ+

γ , ξ
−
γ ) ⊂ C for any loxodromic γ ∈ Γ.

This is done in four steps:
(a) The flat F(ξ+

γ , ξ
−
γ ) meets C. Indeed, for any point x ∈ C, the geodesic

segments [γn · x, γ−n · x], for n ∈ N, are contained in C and converge
(up to passing to a subsequence) to a geodesic line in F(ξ+

γ , ξ
−
γ ) ∩ C

(see [Q, Lem. 5.2]).
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(b) By [Be, Lem. 4.2 bis], for any v ∈ LΓ with ‖v‖ = 1 there is a sequence
(γn)n∈N of loxodromic elements of Γ such that λ(γn)/‖λ(γn)‖ → v
and (ξ+

γn , ξ
−
γn)→ (ξ+

γ , ξ
−
γ ).

(c) This implies that for any v ∈ LΓ with ‖v‖ = 1, the set F(ξ+
γ , ξ

−
γ )∩C

contains a geodesic of direction v (after identification of F(ξ+
γ , ξ

−
γ )

with F0, hence with a, which is well-defined up to the action of the
Weyl group W ). Indeed, fix x ∈ F(ξ+

γ , ξ
−
γ )∩C. For any n ∈ N, there

is a geodesic of direction λ(γn) in F(ξ+
γn , ξ

−
γn)∩C whose distance to x

is bounded independently of n (see [Q, Lem. 5.2]). Up to passing to
a subsequence, these lines converge to a geodesic of direction v in
F(ξ+

γ , ξ
−
γ ) ∩ C.

(d) The limit cone LΓ has nonempty interior [Be, Th. 1.2]. By (c), the
set F(ξ+

γ , ξ
−
γ ) ∩ C contains lines whose directions form a cone with

nonempty interior. This implies F(ξ+
γ , ξ

−
γ ) ⊂ C by convexity of C. �
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