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Introduction

This short note consists of two parts.
Part I is to introduce the convex RP 2-structures on a compact surface

and to explain that the deformation space of such structures on a closed
surface S of genus g > 1 form a moduli space B(S) homeomorphic to an
open cell of dimension 16(g − 1). This work is done by Choi and Goldman.

Part II is to explain the correspondence between the deformation space
B(S) and the space of pairs (Σ, U), where Σ is a Riemann surface varying
in Teichmüller space and U is a cubic differential on Σ. Teichmüller space
T (S) embeds inside B(S) as the locus of pairs (Σ, 0), where Σ is a Riemann
surface varying in Teichmüller space. This work is independently done by
Labourie and Loftin.

Part I: Deformation space of convex RP 2-structures

1. Convex RP 2-structures

Definition 1. An RP 2-structure on a smooth 2-manifold M is a system of
coordinate charts {(Uα, φα)} satisfying

(i) {Uα} is an open cover of M ;
(ii) ψα : Uα → RP 2 is a diffeomorphism onto its image;
(iii) ψβ ◦ ψα−1 ∈ PGL(3,R).
A manifold with an RP 2-structure is called an RP 2-maniflod.
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Definition 2. An RP 2-structure on M is called convex if its developing map

is a diffeomorphism of M̃ onto a convex domain Ω in some affine R2 ⊂ RP 2.
In this case, we can realize M = Ω/Γ, where Γ is a subgroup of PGL(3,R)
which acts discretely and properly discontinuous on Ω.

Fact. Let M = Ω/Γ be a closed surface with a convex RP 2-structure. Sup-
pose that χ(M) < 0. Then the following hold.
(1) Ω ⊂ RP 2 is a strictly convex domain with C1 boundary and therefore
contains no affine line.
(2) Either ∂Ω is a conic in RP 2 or in not C1+ε for some 0 < ε < 1.
(3) The attracting and repelling fixed points of elements of Γ form a dense
subset of ∂Ω. Furthermore given any pair (x, y) ∈ ∂Ω × ∂Ω, there exists a
sequence γn ∈ Γ such that Fix+(γn)→ x, and Fix−(γn)→ y.

Let S denote a compact surface.

Definition 3. RP 2(S) := {(f,M)|f : S → M is a diffeomorphism and M
is an RP 2-manifold}/ , where (f,M) (f ′,M ′) if there exists a projective
isomorphism h : M →M ′ such that h ◦ f is isotopic to f ′.
B(S) denotes the subset of RP 2(S) corresponding to convex RP 2-structures.

Fact. (1) The set of equivalent classes RP 2(S) have a natural topology mak-
ing it locally equivalent to Hom(π, PGL(3,R))/PGL(3,R), i.e., there exists
a holonomy map hol : RP 2(S) → Hom(π, PGL(3,R))/PGL(3,R) which is
a local diffeomorphism.
(2) B(S) is open in RP 2(S).

Excercise 1. Show the following.
(1) RP 2(S) is a Hausdorff real analytic manifold of dimension −8χ(S);
(2) The restriction of hol : RP 2(S)→ Hom(π, SL(3,R))/SL(3,R) to B(S) is
an embedding of B(S) onto a Hausdorff real analytic manifold of dimension
−8χ(S).

Our main goal to show the following theorem.

MainTheorem. (Goldman [3]) Let S be a compact surface having a bound-
ary components such that χ(S) < 0. Then B(S) is diffeomorphic to a celll of
dimension −8χ(S) and the map which associates to a convex RP 2-structures
neaat ∂M is a fibration of B(S) over an open 2n-cell with fiber an open cell
of dimension −8χ(S)− 2n.

Corollary 1.1. Let S be a closed orientable surface of genus g > 1. Then
B(S) is diffeomorphic to an open celll of dimension 16(g − 1).

To prove the above main theorem, we cut a surface into pair-of-pants as
what we did in Teichmueller theory. We first try to understand the simplest
case when where S is a pair-of-pants. Then if we know how to assemble the
convex RP 2-structures on pair-of-pants together, especially if the convex
property is preserved (which is indeed true), we are almost done.
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2. Convex RP 2-structures on a pair-of-pants

In this section, we prove Theorem 1 in the case where S is a pair-of-pants
with A,B,C three components.

Theorem 2.1. The deformation space B(S) of convex RP 2-structures on S
is an open 8-dimension cell.

Sketch of Proof.
Suppose that A ∈ SL(3,R). We define λ(A) to be the real eigenvalue of

A ∈ SL(3,R) having the smallest absolute value and τ(A) ∈ R as the sum
of the other two (possibly unreal) eigenvalues. We can show that the pair
(λ(A), τ(A)) is a complete invariant of the SL(3,R)-conjugacy class of the
boundary A. Such pairs form a 2-cell.

Denote O as the space of SL(3,R)-conjugation classes of the set of all
(40,4a,4b,4c, A,B,C) satisfying conditions described in following pic-
ture.

The reason we consider O instead of B(S) is because:
(1) O is computable and,
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(2) Each RP 2-structure corresponding to a point in O is convex, i.e.,O =
B(S). (the claim needs more proof.)

Now it is sufficient to show the map θ∂S : B(S)→ B(∂S) obtained by asso-
ciating to a convex structure the boundary invariants ((λ, τ)A, (λ, τ)B, (λ, τ)C)
is a fibration over an open 6-cell with fiber a 2-dimensional open cell.

Since O considers the conjugation class under SL(3,R), then we can con-
sider the set (40,4a,4b,4c) as following picture parametrized by (b1, c1, a2, b2, a3, b3).
Note this set is not fixed under diagonal matrices diag(λ, µ, ν) with λµν = 1.
So actually we have 4 dimensional parameters for the conjugation clases
(40,4a,4b,4c).

Here A is parametrized by new parameters (α1, β1, γ1), written as

Here B is parametrized by new parameters (α2, β2, γ2), written as
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Here C is parametrized by new parameters (α3, β3, γ3), written as

From det(A) = det(B) = det(C) = 1, we obtain that

From CBA = 1, we obtain that

The above six equations actually can be reduced to 5 restrictions. Hence
considering (A,B,C) gives us 9-5=4 more parameters. Hence we can see
dim(O) = 4 + 4 = 8.

We are not finished since we need to know O is a cell. Actually, if we are
careful, we may be able to choose two more right parameters (s, t) valued in
R+ besides the boundary invariants ((λ, τ)A, (λ, τ)B, (λ, τ)C), then we are
done.

3. Assembling convex RP 2-structures

The proof is based on the Fenchel-Nilsen coordinate system on Teich-
mueller space. The proof of Main Theorem is based on the following two
lemmas,

Lemma 3.1. (Gluing Convex RP 2-manifolds) Let M0 be a compact
convex RP 2-manifold with principal boundary, and suppose that b1, b2 ⊂
∂M0 are boundary components with collar neighborhoods bi ⊂ N(bi) ⊂
M0(i = 1, 2). Suppose that f : N(b1)→ N(b2) is a projective isomorphism.
Then the RP 2-manifold M0/f obtained by identification by f : N(b1) →
N(b2) is a convex RP 2-manifold.
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From the above lemma, we know that gluing convex RP 2-structures along
a geodesic curve C only depends on the projective isomorphism f on the
neighborhood of C. Then conversely we actually know how much informa-
tion we lose if we cut a convex RP 2-structure along a geodesic curve, which
is stated in the following lemma.

Lemma 3.2. (Gut Convex RP 2-manifolds) Suppose that C ⊂ S is a
two-sided simple closed curve such that each component of S|C has negative
Euler characteristic. Let ΠC : B(S) → a subspace of B(S|C) be the map
which arises from splitting a convex RP 2-structure on S along the closed
geodesic homotopic to C. Then ΠC is a fibration and each fiber of is an
open 2-cell.

Sketch of Lemma: Let b1, b2 ⊂ ∂(S|C) be the two boundary components
corresponding to C. We now define an R2-action Ψ on B(S) such that ΠC

is a Ψ-invariant fibration onto the subspace of B(S|C) defined by the condi-
tions (λ, τ)b1 = (λ, τ)b2 and Ψ is simply transitive on each fiber of ΠC . For
(u, v) ∈ R2 we construct a new convex RP 2-manifold Ψ(u,v)(M) representing

a point in RP 2-manifold.
Consider the split RP 2-manifold M |C; let b1, b2 ⊂ ∂(M |C) be the two
boundary components corresponding to C. For any (u, v) ∈ R2, there exists
a principal collar neighborhoods N(bi) ⊂M |C of bi for i = 1, 2
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Let T u =

e−u 0 0
0 1 0
0 0 eu

 , Uv =

e−v 0 0
0 e2v 0
0 0 e−v

, where u, v ∈ R. Let

f(u, v) : N(b1) → N(b2) be a projective isomorphism such that f(u, v) is
induced by T uUv on the developing image in RP 2. As in Gluing Lemma,
there is a corresponding convex RP 2-manifold (M |C)/f(u, v) representing
a point Ψ(u,v)(M) in B(S). This action generalizes the Fenchel-Nilsen twist
flows on the Teichmueller space.

MainTheorem. (Goldman [3]) Let S be a compact surface having a bound-
ary components such that χ(S) < 0. Then B(S) is diffeomorphic to a celll of
dimension −8χ(S) and the map which associates to a convex RP 2-structures
neaat ∂M is a fibration of B(S) over an open 2n-cell with fiber an open cell
of dimension −8χ(S)− 2n.

4. Hitchin Component

Hitchin shows that Hom(π, SL(3,R))/SL(3,R) has exactly three con-
nected components:
1. C0, the component containing the class of the trivial representation;
2. C1, the component consisting of classes of representatons which do not
lift to the double covering of PGL(3,R);
3. C2, the component containing faithful representations into SO(2, 1).

In particaular, the component C2 contais the Teichmueller space of S.
From our exercise, we know the holonomy map hol maps B(S) bijectively
onto an open subset in C2. Furthermore, Hitchin shows that C2 is homeomor-
phic to R16(g−1). This naturally let Hitchin to conjecture that C2 = B(S).

Theorem 4.1. (Choi and Goldman [2]) B(S) is closed in C2. Hence C2 =
B(S).

Part II: Correspondence of B(S) and spaces of pairs (Σ, U)

From now on, let S and M be a closed orientable surface of genus g. Our
goal is to show the following theorem.

MainTheorem. (Loftin [5], Labourie [4]) There exists a natural bijective
correspondence betwen convex RP 2-structures on S and pairs (Σ, U), where
Σ is a Riemann surface homeomorphic to S, and U is a holomorphic cubic
differential on Σ.

Benoist and Hulin in [1] generalize the above result to the case when S is
not necessarily closed stated as follows.

Theorem 4.2. (Theorem 1.1 in [1]) Let S be an oriented surface with non-
abelian fundamental group. The map A → (J, U) is a bijection between:
1. the set of properly convex projective structures A on s with finite Finster
volume;
2. the set of hyperbolic Riemann surface structures J on S with finite volume
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together with a holomorphic cubic differential U on (S, J) with poles of order
at most 2 at the cusps.

5. Hyperbolic Affine Sphere

This section is mainly copied from Loftin [5].
Consider a hypersurface immersion f : H → R3, and consider a transversal
vector field ξ on the hypersurface H. We have the equations:

DXf∗(Y ) = f∗(∇XY ) + h(X,Y )ξ

DXξ = −f∗(SX) + β(X)ξ.

Here, X and Y are tangent vectors on H, the operator D is the canonical
flat connection induced from R3, the operator ∇ is a torsion-free connec-
tion, the form h is a symmetric bilinear form on Tx(H), the map S is an
endormorphism of Tx(M), and β is a one-form.

For the case the hypersurface H is strictly convex and ξ is the affine
normal (see definiton in page 8 in [5]), the structure equations for H become

DXf∗(Y ) = f∗(∇XY ) + g(X,Y )ξ

DXξ = −f∗(SX).

The connection ∇ is callled the Blaschke connection. The bilinear form h is
called the affine metric (since H is strictly convex)and the endormorphism
S is called the affine shape operator.

Definition 4. An affine sphere is a hypersurface H in R3 all of whose affine
normals point toward a given point in RP 2, the center of the affine sphere, in
this case S = LI, where the affine mean curvature L is a constant function
on H and I is the identity map. If the center lies on the concave side of H, it
is called a hyperbolic affine sphere, corresponding to the case L is negative.

Thus by scaling, we can normalize any hyperbolic affine sphere to have
L = −1. Also, we can translate so that the center is 0. Then the affine
normal ξ = f , where f is the embedding of H into R3. The structure
equations then become

DXf∗(Y ) = f∗(∇XY ) + g(X,Y )f

DXf = f∗(X).
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Proposition 5.1. Consider a convex, bounded domain Ω ⊂ R2, where R2 is
embedded in R3 as the affine space x3 = 1. Then, there is a unique properly
embedded hyperbolic affne sphere H ⊂ R3 of affine mean curvatuer -1 and
center 0 asymptotic to the boundary of the cone C(Ω) ⊂ R3.

Proposition 5.2. Each convex RP 2-structure on M corresponds to an
affine sphere structure on M(i.e., M can be realized as a quotient of a byper-
bolic affine sphere with center 0 and affine mean curvature -1 in the cone
C.) vice versa.

Now we make use of the affine sphere structures to get the correspon-
dence.

6. How to get a holomorphic cubic differential

This section is mainly copied from Loftin [6].
To get a holomorphic cubic differential from this construction, we begin
to work with complexified tangent vectors, and we extend ∇, h and D by
complex linearity. Consider a local conformal coordinate z = x+ iy on the
hyperbolic affine sphere with center the origin and affine curvature -1. Then
the affine metric is given by g = eψ|dz|2 for some function ψ. Parametrize
the surface by

(6.1) f : D → R3,

with D a domain in C. Then we have the following structure equations for
the affine sphere:

DXY = ∇XY + g(X,Y )f

DXf = X

Here D is the canonical flat connection on R3, ∇ is a projectively flat con-
nection, and g is the affine metric. Consider the complexified frame for the
tangent bundle to the surface given by {e1 = fz = f∗(

∂
∂z ), e1 = fz = f∗(

∂
∂z )}.

Then we have

g(fz, fz) = g(fz, fz) = 0, g(fz, fz) =
1

2
eψ.

Consider θ̂, θ the matrix of connection one-forms for the Levi-Civita connec-
tion, Blaschke connection respectively. By the above equation,

θ̂1
1

= θ̂11 = 0, θ̂11 = ∂ψ, θ̂1
1

= ∂ψ.

The difference θ̂ − θ is given by the Pick form J . We have

θ̂ji − θ
j
i = Cjikρ

k,

where {ρ1 = dz, ρ1 = dz} is the dual frame of one-forms. With the property
of the affine normal ξ such that det(fz, fz, ξ) = 1

2 ie
φ and the totally symme-

try of Cijk in affine differential geometry ( where Cijk = C lijglk, i.e., lower

index), this determines θ:



10 QIONGLING LI

(
θ11 θ1

1

θ11 θ1
1

)
=

(
∂ψ C1

11
dz

C1
11dz ∂ψ

)
=

(
∂ψ Ue−ψdz

Ue−ψdz ∂ψ

)
,

where we define U = C1
11e

ψ.
Recall that D is the canonical flat connection induced from R3. We get

the structure equations

fzz = ψzfz + Ue−ψfz

fzz = Ue−ψfz + ψzfz

fzz =
1

2
eψf

Then, these three equations form a linear first-order system of partial
differential equations in f, fz, fz, where we may write as

∂
∂z

 f
fz
fz

 =

 0 1 0
0 ψz Ue−ψ

1
2e
ψ 0 0

 f
fz
fz

,

∂
∂z

 f
fz
fz

 =

 0 0 1
1
2e
ψ 0 0

0 Ue−ψ ψz

 f
fz
fz

.

In order to have a solution of the system, the only condition is that mixed
partials must commute (by the Frobenius theorem). Thus we require the
two conditions

ψzz + UUe−2ψ − 1

2
eψ = 0,

Uz = 0.

By the above argument, we actually construct a map from the space of
convex RP 2-structures on S to the space of pairs (Σ, U). The converse
direction is mainly by showing the existence and uniqueness of solutions to
the above elliptic equation for a given pair (Σ, U). Combining these two
directions together, we obtain the following main theorem.

MainTheorem. (Loftin [5], Labourie [4]) Let S be a compact oriented sur-
face of genus g > 1. There exists a natural bijective correspondence betwen
convex RP 2-structures on S and pairs (Σ, U), where Σ is a Riemann surface
homeomorphic to S, and U is a holomorphic cubic differential on Σ.
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