LECTURE NOTES FOR CONVEX REAL PROJECTIVE **STRUCTURES**

QIONGLING LI

INTRODUCTION

This short note consists of two parts.

Part I is to introduce the convex $\mathbb{R}P^2$ -structures on a compact surface and to explain that the deformation space of such structures on a closed surface S of genus q > 1 form a moduli space $\mathcal{B}(S)$ homeomorphic to an open cell of dimension 16(g-1). This work is done by Choi and Goldman.

Part II is to explain the correspondence between the deformation space $\mathcal{B}(S)$ and the space of pairs (Σ, U) , where Σ is a Riemann surface varying in Teichmüller space and U is a cubic differential on Σ . Teichmüller space $\mathcal{T}(S)$ embeds inside $\mathcal{B}(S)$ as the locus of pairs $(\Sigma, 0)$, where Σ is a Riemann surface varying in Teichmüller space. This work is independently done by Labourie and Loftin.

Part I: Deformation space of convex $\mathbb{R}P^2$ -structures

1. Convex $\mathbb{R}P^2$ -structures

Definition 1. An $\mathbb{R}P^2$ -structure on a smooth 2-manifold M is a system of coordinate charts $\{(U_{\alpha}, \phi_{\alpha})\}$ satisfying

(i) $\{U_{\alpha}\}$ is an open cover of M; (ii) $\psi_{\alpha}: U_{\alpha} \to \mathbb{R}P^{2}$ is a diffeomorphism onto its image; (iii) $\psi_{\beta} \circ \psi_{\alpha}^{-1} \in PGL(3, \mathbb{R}).$

A manifold with an $\mathbb{R}P^2$ -structure is called an $\mathbb{R}P^2$ -manifold.

Definition 2. An $\mathbb{R}P^2$ -structure on M is called convex if its developing map is a diffeomorphism of \widetilde{M} onto a convex domain Ω in some affine $\mathbb{R}^2 \subset \mathbb{R}P^2$. In this case, we can realize $M = \Omega/\Gamma$, where Γ is a subgroup of $PGL(3, \mathbb{R})$ which acts discretely and properly discontinuous on Ω .

Fact. Let $M = \Omega/\Gamma$ be a closed surface with a convex $\mathbb{R}P^2$ -structure. Suppose that $\chi(M) < 0$. Then the following hold.

(1) $\Omega \subset \mathbb{R}P^2$ is a strictly convex domain with C^1 boundary and therefore contains no affine line.

(2) Either $\partial \Omega$ is a conic in $\mathbb{R}P^2$ or in not $C^{1+\epsilon}$ for some $0 < \epsilon < 1$.

(3) The attracting and repelling fixed points of elements of Γ form a dense subset of $\partial\Omega$. Furthermore given any pair $(x, y) \in \partial\Omega \times \partial\Omega$, there exists a sequence $\gamma_n \in \Gamma$ such that $Fix_+(\gamma_n) \to x$, and $Fix_-(\gamma_n) \to y$.

Let S denote a compact surface.

Definition 3. $\mathbb{R}P^2(S) := \{(f, M) | f : S \to M \text{ is a diffeomorphism and } M$ is an $\mathbb{R}P^2$ -manifold $\}/$, where (f, M) (f', M') if there exists a projective isomorphism $h : M \to M'$ such that $h \circ f$ is isotopic to f'.

 $\mathcal{B}(S)$ denotes the subset of $\mathbb{R}P^2(S)$ corresponding to convex $\mathbb{R}P^2$ -structures.

Fact. (1) The set of equivalent classes $\mathbb{R}P^2(S)$ have a natural topology making it locally equivalent to $Hom(\pi, PGL(3, \mathbb{R}))/PGL(3, \mathbb{R})$, i.e., there exists a holonomy map hol : $\mathbb{R}P^2(S) \to Hom(\pi, PGL(3, \mathbb{R}))/PGL(3, \mathbb{R})$ which is a local diffeomorphism.

(2) $\mathcal{B}(S)$ is open in $\mathbb{R}P^2(S)$.

Excercise 1. Show the following.

(1) $\mathbb{R}P^2(S)$ is a Hausdorff real analytic manifold of dimension $-8\chi(S)$; (2) The restriction of hol: $\mathbb{R}P^2(S) \to Hom(\pi, SL(3, \mathbb{R}))/SL(3, \mathbb{R})$ to $\mathcal{B}(S)$ is an embedding of $\mathcal{B}(S)$ onto a Hausdorff real analytic manifold of dimension $-8\chi(S)$.

Our main goal to show the following theorem.

MainTheorem. (Goldman [3]) Let S be a compact surface having a boundary components such that $\chi(S) < 0$. Then $\mathcal{B}(S)$ is diffeomorphic to a cell of dimension $-8\chi(S)$ and the map which associates to a convex $\mathbb{R}P^2$ -structures neaat ∂M is a fibration of $\mathcal{B}(S)$ over an open 2n-cell with fiber an open cell of dimension $-8\chi(S) - 2n$.

Corollary 1.1. Let S be a closed orientable surface of genus g > 1. Then $\mathcal{B}(S)$ is diffeomorphic to an open cell of dimension 16(g-1).

To prove the above main theorem, we cut a surface into pair-of-pants as what we did in Teichmueller theory. We first try to understand the simplest case when where S is a pair-of-pants. Then if we know how to assemble the convex $\mathbb{R}P^2$ -structures on pair-of-pants together, especially if the convex property is preserved (which is indeed true), we are almost done.

 $\mathbf{2}$

2. Convex $\mathbb{R}P^2$ -structures on a pair-of-pants

In this section, we prove Theorem 1 in the case where S is a pair-of-pants with A, B, C three components.

Theorem 2.1. The deformation space $\mathcal{B}(S)$ of convex $\mathbb{R}P^2$ -structures on S is an open 8-dimension cell.

Sketch of Proof.

Suppose that $A \in SL(3, \mathbb{R})$. We define $\lambda(A)$ to be the real eigenvalue of $A \in SL(3, \mathbb{R})$ having the smallest absolute value and $\tau(A) \in \mathbb{R}$ as the sum of the other two (possibly unreal) eigenvalues. We can show that the pair $(\lambda(A), \tau(A))$ is a complete invariant of the $SL(3, \mathbb{R})$ -conjugacy class of the boundary A. Such pairs form a 2-cell.

Denote \mathcal{O} as the space of $SL(3,\mathbb{R})$ -conjugation classes of the set of all $(\triangle_0, \triangle_a, \triangle_b, \triangle_c, A, B, C)$ satisfying conditions described in following picture.

the union $\overline{\Delta}_0 \cup \overline{\Delta}_a \cup \overline{\Delta}_b \cup \overline{\Delta}_c$ is a convex hexagon;

The reason we consider \mathcal{O} instead of $\mathcal{B}(S)$ is because: (1) \mathcal{O} is computable and,

QIONGLING LI

(2) Each $\mathbb{R}P^2$ -structure corresponding to a point in \mathcal{O} is convex, i.e., $\mathcal{O} = \mathcal{B}(S)$. (the claim needs more proof.)

Now it is sufficient to show the map $\theta_{\partial S} : \mathcal{B}(S) \to \mathcal{B}(\partial S)$ obtained by associating to a convex structure the boundary invariants $((\lambda, \tau)_A, (\lambda, \tau)_B, (\lambda, \tau)_C)$ is a fibration over an open 6-cell with fiber a 2-dimensional open cell.

Since \mathcal{O} considers the conjugation class under $SL(3, \mathbb{R})$, then we can consider the set $(\triangle_0, \triangle_a, \triangle_b, \triangle_c)$ as following picture parametrized by $(b_1, c_1, a_2, b_2, a_3, b_3)$. Note this set is not fixed under diagonal matrices $\operatorname{diag}(\lambda, \mu, \nu)$ with $\lambda \mu \nu = 1$. So actually we have 4 dimensional parameters for the conjugation clases $(\triangle_0, \triangle_a, \triangle_b, \triangle_c)$.

Here A is parametrized by new parameters $(\alpha_1, \beta_1, \gamma_1)$, written as

$$A = \alpha_1 \cdot \begin{bmatrix} 1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 1 & a_2 & 0 \end{bmatrix} + \beta_1 \cdot \begin{bmatrix} 0\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 \end{bmatrix}$$
$$+ \gamma_1 \cdot \begin{bmatrix} a_3\\b_3\\-1 \end{bmatrix} \cdot \begin{bmatrix} 0 & c_2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_1 & \alpha_1 a_2 + \gamma_1 a_3 c_1 & \gamma_1 a_3\\0 & -\beta_1 + \gamma_1 b_3 c_2 & \gamma_1 b_3\\0 & -\gamma_1 c_2 & -\gamma_1 \end{bmatrix},$$

Here B is parametrized by new parameters $(\alpha_2, \beta_2, \gamma_2)$, written as

4

$$B = \alpha_2 \cdot \begin{bmatrix} -1 \\ b_1 \\ c_1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & a_3 \end{bmatrix} + \beta_2 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & b_3 \end{bmatrix} \\ + \gamma_2 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & -1 \end{bmatrix} \\ = \begin{bmatrix} -\alpha_2 & 0 & -\alpha_2 a_3 \\ \alpha_2 b_1 & \beta_2 & \beta_2 b_3 + \alpha_2 a_3 b_1 \\ \alpha_2 c_1 & 0 & -\gamma_2 + \alpha_2 a_3 c_1 \end{bmatrix},$$

Here C is parametrized by new parameters $(\alpha_3, \beta_3, \gamma_3)$, written as

$$C = \alpha_{3} \cdot \begin{bmatrix} 1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} + \beta_{3} \cdot \begin{bmatrix} a_{2}\\-1\\c_{2} \end{bmatrix} \cdot \begin{bmatrix} b_{1} & 1 & 0 \end{bmatrix} \\ + \gamma_{3} \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix} \cdot \begin{bmatrix} c_{1} & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} -\alpha_{3} + \beta_{3}a_{2}b_{1} & \beta_{3}a_{2} & 0\\-\beta_{3}b_{1} & -\beta_{3} & 0\\\gamma_{3}c_{1} + \beta_{3}b_{1}c_{2} & \beta_{3}c_{2} & \gamma_{3} \end{bmatrix},$$

From det(A) = det(B) = det(C) = 1, we obtain that

$$\alpha_1 \beta_1 \gamma_1 = \alpha_2 \beta_2 \gamma_2 = \alpha_3 \beta_3 \gamma_3 = 1$$

From CBA = 1, we obtain that

$$\alpha_1 \alpha_2 \alpha_3 = \beta_1 \beta_2 \beta_3 = \gamma_1 \gamma_2 \gamma_3 = 1.$$

The above six equations actually can be reduced to 5 restrictions. Hence considering (A, B, C) gives us 9-5=4 more parameters. Hence we can see $\dim(\mathcal{O}) = 4 + 4 = 8$.

We are not finished since we need to know \mathcal{O} is a cell. Actually, if we are careful, we may be able to choose two more right parameters (s, t) valued in \mathbb{R}_+ besides the boundary invariants $((\lambda, \tau)_A, (\lambda, \tau)_B, (\lambda, \tau)_C)$, then we are done.

3. Assembling convex $\mathbb{R}P^2$ -structures

The proof is based on the Fenchel-Nilsen coordinate system on Teichmueller space. The proof of Main Theorem is based on the following two lemmas,

Lemma 3.1. (*Gluing Convex* $\mathbb{R}P^2$ -manifolds) Let M_0 be a compact convex $\mathbb{R}P^2$ -manifold with principal boundary, and suppose that $b_1, b_2 \subset$ ∂M_0 are boundary components with collar neighborhoods $b_i \subset N(b_i) \subset$ $M_0(i = 1, 2)$. Suppose that $f : N(b_1) \to N(b_2)$ is a projective isomorphism. Then the $\mathbb{R}P^2$ -manifold M_0/f obtained by identification by $f : N(b_1) \to$ $N(b_2)$ is a **convex** $\mathbb{R}P^2$ -manifold. QIONGLING LI

From the above lemma, we know that gluing convex $\mathbb{R}P^2$ -structures along a geodesic curve C only depends on the projective isomorphism f on the neighborhood of C. Then conversely we actually know how much information we lose if we cut a convex $\mathbb{R}P^2$ -structure along a geodesic curve, which is stated in the following lemma.

Lemma 3.2. (*Gut Convex* $\mathbb{R}P^2$ -manifolds) Suppose that $C \subset S$ is a two-sided simple closed curve such that each component of S|C has negative Euler characteristic. Let $\Pi_C : \mathcal{B}(S) \to a$ subspace of $\mathcal{B}(S|C)$ be the map which arises from splitting a convex $\mathbb{R}P^2$ -structure on S along the closed geodesic homotopic to C. Then Π_C is a fibration and each fiber of is an open 2-cell.

Sketch of Lemma: Let $b_1, b_2 \subset \partial(S|C)$ be the two boundary components corresponding to C. We now define an \mathbb{R}^2 -action Ψ on $\mathcal{B}(S)$ such that Π_C is a Ψ -invariant fibration onto the subspace of $\mathcal{B}(S|C)$ defined by the conditions $(\lambda, \tau)_{b_1} = (\lambda, \tau)_{b_2}$ and Ψ is simply transitive on each fiber of Π_C . For $(u, v) \in \mathbb{R}^2$ we construct a new convex $\mathbb{R}P^2$ -manifold $\Psi_{(u,v)}(M)$ representing a point in $\mathbb{R}P^2$ -manifold.

Consider the split $\mathbb{R}P^2$ -manifold M|C; let $b_1, b_2 \subset \partial(M|C)$ be the two boundary components corresponding to C. For any $(u, v) \in \mathbb{R}^2$, there exists a principal collar neighborhoods $N(b_i) \subset M|C$ of b_i for i = 1, 2

Let
$$T^{u} = \begin{pmatrix} e^{-u} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{u} \end{pmatrix}, U^{v} = \begin{pmatrix} e^{-v} & 0 & 0\\ 0 & e^{2v} & 0\\ 0 & 0 & e^{-v} \end{pmatrix}$$
, where $u, v \in \mathbb{R}$. Let

 $f(u,v): N(b_1) \to N(b_2)$ be a projective isomorphism such that f(u,v) is induced by $T^u U^v$ on the developing image in $\mathbb{R}P^2$. As in Gluing Lemma, there is a corresponding convex $\mathbb{R}P^2$ -manifold (M|C)/f(u,v) representing a point $\Psi_{(u,v)}(M)$ in $\mathcal{B}(S)$. This action generalizes the Fenchel-Nilsen twist flows on the Teichmueller space.

MainTheorem. (Goldman [3]) Let S be a compact surface having a boundary components such that $\chi(S) < 0$. Then $\mathcal{B}(S)$ is diffeomorphic to a cell of dimension $-8\chi(S)$ and the map which associates to a convex $\mathbb{R}P^2$ -structures neaat ∂M is a fibration of $\mathcal{B}(S)$ over an open 2n-cell with fiber an open cell of dimension $-8\chi(S) - 2n$.

4. HITCHIN COMPONENT

Hitchin shows that $Hom(\pi, SL(3, \mathbb{R}))/SL(3, \mathbb{R})$ has exactly three connected components:

1. C_0 , the component containing the class of the trivial representation;

2. C_1 , the component consisting of classes of representations which do not lift to the double covering of $PGL(3, \mathbb{R})$;

3. C_2 , the component containing faithful representations into SO(2,1).

In particular, the component C_2 contais the Teichmueller space of S. From our exercise, we know the holonomy map **hol** maps $\mathcal{B}(S)$ bijectively onto an open subset in C_2 . Furthermore, Hitchin shows that C_2 is homeomorphic to $\mathbb{R}^{16(g-1)}$. This naturally let Hitchin to conjecture that $C_2 = \mathcal{B}(S)$.

Theorem 4.1. (Choi and Goldman [2]) $\mathcal{B}(S)$ is closed in \mathcal{C}_2 . Hence $\mathcal{C}_2 = \mathcal{B}(S)$.

Part II: Correspondence of $\mathcal{B}(S)$ and spaces of pairs (Σ, U)

From now on, let S and M be a closed orientable surface of genus g. Our goal is to show the following theorem.

MainTheorem. (Loftin [5], Labourie [4]) There exists a natural bijective correspondence between convex $\mathbb{R}P^2$ -structures on S and pairs (Σ, U) , where Σ is a Riemann surface homeomorphic to S, and U is a holomorphic cubic differential on Σ .

Benoist and Hulin in [1] generalize the above result to the case when S is not necessarily closed stated as follows.

Theorem 4.2. (Theorem 1.1 in [1]) Let S be an oriented surface with nonabelian fundamental group. The map $\mathcal{A} \to (J, U)$ is a bijection between:

1. the set of properly convex projective structures \mathcal{A} on s with finite Finster volume;

2. the set of hyperbolic Riemann surface structures J on S with finite volume

QIONGLING LI

together with a holomorphic cubic differential U on (S, J) with poles of order at most 2 at the cusps.

5. Hyperbolic Affine Sphere

This section is mainly copied from Loftin [5]. Consider a hypersurface immersion $f: H \to \mathbb{R}^3$, and consider a transversal vector field ξ on the hypersurface H. We have the equations:

$$D_X f_*(Y) = f_*(\nabla_X Y) + h(X, Y)\xi$$

$$D_X \xi = -f_*(SX) + \beta(X)\xi.$$

Here, X and Y are tangent vectors on H, the operator D is the canonical flat connection induced from \mathbb{R}^3 , the operator ∇ is a torsion-free connection, the form h is a symmetric bilinear form on $T_x(H)$, the map S is an endormorphism of $T_x(M)$, and β is a one-form.

For the case the hypersurface H is strictly convex and ξ is the affine normal (see definiton in page 8 in [5]), the structure equations for H become

$$D_X f_*(Y) = f_*(\nabla_X Y) + g(X, Y)\xi$$

$$D_X \xi = -f_*(SX).$$

The connection ∇ is called the Blaschke connection. The bilinear form h is called the affine metric (since H is strictly convex)and the endormorphism S is called the affine shape operator.

Definition 4. An affine sphere is a hypersurface H in \mathbb{R}^3 all of whose affine normals point toward a given point in $\mathbb{R}P^2$, the center of the affine sphere, in this case S = LI, where the affine mean curvature L is a constant function on H and I is the identity map. If the center lies on the concave side of H, it is called a hyperbolic affine sphere, corresponding to the case L is negative.

Thus by scaling, we can normalize any hyperbolic affine sphere to have L = -1. Also, we can translate so that the center is 0. Then the affine normal $\xi = f$, where f is the embedding of H into \mathbb{R}^3 . The structure equations then become

$$D_X f_*(Y) = f_*(\nabla_X Y) + g(X, Y) f$$

$$D_X f = f_*(X).$$

Proposition 5.1. Consider a convex, bounded domain $\Omega \subset \mathbb{R}^2$, where \mathbb{R}^2 is embedded in \mathbb{R}^3 as the affine space $x_3 = 1$. Then, there is a unique properly embedded hyperbolic affine sphere $H \subset \mathbb{R}^3$ of affine mean curvatuer -1 and center 0 asymptotic to the boundary of the cone $\mathcal{C}(\Omega) \subset \mathbb{R}^3$.

Proposition 5.2. Each convex $\mathbb{R}P^2$ -structure on M corresponds to an affine sphere structure on M (i.e., M can be realized as a quotient of a byperbolic affine sphere with center 0 and affine mean curvature -1 in the cone C.) vice versa.

Now we make use of the affine sphere structures to get the correspondence.

6. How to get a holomorphic cubic differential

This section is mainly copied from Loftin [6].

To get a holomorphic cubic differential from this construction, we begin to work with complexified tangent vectors, and we extend ∇ , h and D by complex linearity. Consider a local conformal coordinate z = x + iy on the hyperbolic affine sphere with center the origin and affine curvature -1. Then the affine metric is given by $g = e^{\psi} |dz|^2$ for some function ψ . Parametrize the surface by

(6.1)
$$f: \mathcal{D} \to \mathbb{R}^3,$$

with \mathcal{D} a domain in \mathbb{C} . Then we have the following structure equations for the affine sphere:

$$D_X Y = \nabla_X Y + g(X, Y) f$$

$$D_X f = X$$

Here D is the canonical flat connection on \mathbb{R}^3 , ∇ is a projectively flat connection, and g is the affine metric. Consider the complexified frame for the tangent bundle to the surface given by $\{e_1 = f_z = f_*(\frac{\partial}{\partial z}), e_{\overline{1}} = f_{\overline{z}} = f_*(\frac{\partial}{\partial \overline{z}})\}$.

Then we have

$$g(f_z, f_z) = g(f_{\overline{z}}, f_{\overline{z}}) = 0, \ g(f_z, f_{\overline{z}}) = \frac{1}{2}e^{\psi}.$$

Consider $\hat{\theta}, \theta$ the matrix of connection one-forms for the Levi-Civita connection, Blaschke connection respectively. By the above equation,

$$\widehat{\theta}_{\overline{1}}^{1} = \widehat{\theta}_{1}^{\overline{1}} = 0, \ \widehat{\theta}_{1}^{1} = \partial \psi, \ \widehat{\theta}_{\overline{1}}^{\overline{1}} = \overline{\partial} \psi.$$

The difference $\hat{\theta} - \theta$ is given by the Pick form J. We have

$$\widehat{\theta}_i^j - \theta_i^j = C_{ik}^j \rho^k,$$

where $\{\rho^1 = dz, \rho^{\overline{1}} = d\overline{z}\}$ is the dual frame of one-forms. With the property of the affine normal ξ such that $det(f_z, f_{\overline{z}}, \xi) = \frac{1}{2}ie^{\phi}$ and the totally symmetry of C_{ijk} in affine differential geometry (where $C_{ijk} = C_{ij}^l g_{lk}$, i.e., lower index), this determines θ :

$$\begin{pmatrix} \theta_1^1 & \theta_1^1 \\ \theta_1^{\overline{1}} & \theta_1^{\overline{1}} \end{pmatrix} = \begin{pmatrix} \partial \psi & C_{\overline{11}}^1 d\overline{z} \\ C_{\overline{11}}^{\overline{1}} dz & \overline{\partial} \psi \end{pmatrix} = \begin{pmatrix} \partial \psi & \overline{U} e^{-\psi} d\overline{z} \\ U e^{-\psi} dz & \overline{\partial} \psi \end{pmatrix},$$

where we define $U = C_{11}^1 e^{\psi}$.

Recall that D is the canonical flat connection induced from \mathbb{R}^3 . We get the structure equations

$$f_{zz} = \psi_z f_z + U e^{-\psi} f_{\overline{z}}$$

$$f_{\overline{z}\overline{z}} = \overline{U} e^{-\psi} f_z + \psi_{\overline{z}} f_{\overline{z}}$$

$$f_{z\overline{z}} = \frac{1}{2} e^{\psi} f$$

Then, these three equations form a linear first-order system of partial differential equations in $f, f_z, f_{\overline{z}}$, where we may write as

$$\frac{\partial}{\partial z} \begin{pmatrix} f\\ f_z\\ f_{\overline{z}} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0\\ 0 & \psi_z & Ue^{-\psi}\\ \frac{1}{2}e^{\psi} & 0 & 0 \end{pmatrix} \begin{pmatrix} f\\ f_z\\ f_{\overline{z}} \end{pmatrix},$$
$$\frac{\partial}{\partial \overline{z}} \begin{pmatrix} f\\ f_z\\ f_{\overline{z}} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1\\ \frac{1}{2}e^{\psi} & 0 & 0\\ 0 & \overline{U}e^{-\psi} & \psi_{\overline{z}} \end{pmatrix} \begin{pmatrix} f\\ f_z\\ f_{\overline{z}} \end{pmatrix}.$$

In order to have a solution of the system, the only condition is that mixed partials must commute (by the Frobenius theorem). Thus we require the two conditions

$$\psi_{zz} + U\overline{U}e^{-2\psi} - \frac{1}{2}e^{\psi} = 0,$$
$$U_{\overline{z}} = 0.$$

By the above argument, we actually construct a map from the space of convex $\mathbb{R}P^2$ -structures on S to the space of pairs (Σ, U) . The converse direction is mainly by showing the existence and uniqueness of solutions to the above elliptic equation for a given pair (Σ, U) . Combining these two directions together, we obtain the following main theorem.

MainTheorem. (Loftin [5], Labourie [4]) Let S be a compact oriented surface of genus g > 1. There exists a natural bijective correspondence between convex $\mathbb{R}P^2$ -structures on S and pairs (Σ, U) , where Σ is a Riemann surface homeomorphic to S, and U is a holomorphic cubic differential on Σ .

References

- Yves Benoist, Dominique Hulin, Cubic differentials and finite volume convex projective surfaces, Geometry Topology 17(2013), pp 595 - 620.
- [2] S. Choi, W. Goldman, Convex Real Projective Structures on Closed Surfaces are Closed, Proceedings of American Mathematic Society, 118(2), pp 657 - 661, 1993.
- [3] William M.Goldman, Convex Real Projective Structures on Compact Surfaces, J. Differential Geometry 31 (1990), pp. 791 – 845.

10

- [4] Francois Labourie, Flat Projective Structures on Surfaces and Cubic Holomorphic Differentials, Pure and Applied Mathematics Quarterly, Volume 3, No. 4 (2007), pp. 1057 - 1099.
- [5] John Loftin, Affine spheres and convex RPⁿ-manifolds, American Journal of Mathematics, April, 2001.
- [6] John Loftin, The Compactification of the Moduli Space of Convex RP2 Surfaces, I, Journal of Differential Geometry, October, 2004.

 $E\text{-}mail \ address: \ \texttt{ql4} \texttt{Qrice.edu}$