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Abstract. The theory of Higgs bundles, initiated by Hitchin, has been in-

strumental in understanding the topology and geometry of character varieties.

In addition, this gauge theoretic viewpoint provides a wealth of revealing,

and puzzling, extra structure on the character variety. The key to the cor-

respondence between representations of surface groups and Higgs bundles is

the existence of an equivariant harmonic map from the universal cover of the

surface to the symmetric space associated to a reductive Lie group G. The

purpose of this note is to introduce the theory of Higgs bundles, with a strong

emphasis put on the role of harmonic maps. We will begin with an overview

of Fricke-Teichmüller theory via harmonic maps, and then explain how Higgs

bundles generalize this point of view from PSL(2,R) to other Lie groups. We

will focus exclusively on the linear groups SL(n,C), though it should be noted

that the theory proceeds in an analogous fashion for any reductive Lie group.

Throughout, Σ is a fixed smooth, oriented, closed surface of genus greater than

one. A base point x ∈ Σ is fixed and let π := π1(Σ, x).

1. Fricke-Teichmüller theory via harmonic maps

Select hyperbolic metrics h0 and h on Σ. In local isothermal coordinates z =

x1 + ix2 and w = y1 + iy2 for h0 and h respectively,

h0 = e2u|dz|2

and

h = e2v|dw|2.

For any C1-mapping f : Σ→ Σ, define the energy (or action functional):

E(f) =
1

2

∫
Σ

‖df‖2dVh0 .

Above, we view the differential of f as a section df ∈ Γ(T ∗Σ ⊗ f∗TΣ) and the

norm ‖df‖2 (the energy density) is computed using the metrics h0 and h, explicitly

in local coordinates:

‖df‖2 = hij0 ∂if
α∂jf

βhαβ(f).

Here, we employ Einstein summation convention with matching upper and lower

indices being summed. Latin indices refer to domain variables and Greek indices

to range variables; lastly,

fα = f ◦ yα.
1
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Definition 1.1. A C1-mapping f : Σ → Σ is harmonic if it is a critical point for

the energy. Namely, given any C1-variation through C1-mappings ft : Σ→ Σ, the

first variation vanishes:

d

dt
E(ft)|t=0 = 0.

Throughout the rest of the notes, we will ignore all issues of regularity and

assume all maps to be C∞. This is not a major restriction for our purposes, the

regularity theory for semi-linear elliptic PDE will guarantee the harmonic maps we

meet are even real-analytic.

A smooth map f : Σ → Σ which is harmonic necessarily satisfies the Euler-

Lagrange equations

∆h0
fγ + Γγαβ(f)∂if

α∂jf
βhij0 = 0(1.1)

for γ = 1, 2.

In these equations, ∆h0
is the Laplace-Beltrami operator for the metric h0 and

the Γγαβ are the Christoffel symbols for the target metric h. This is a semi-linear

system of elliptic partial differential equations; if this sounds a bit arcane, for our

purposes it assures that solutions to this equation have very strong regularity and

uniqueness properties.

Observe that everything said above makes sense replacing Σ by a pair of closed

Riemannian manifolds (M, g) and (N,h). Harmonic maps in this setting were for-

mally introduced by Eells and Sampson [ES64] culminating in:

Theorem 1.2. Let (M, g) and (N,h) be closed, smooth Riemannian manifolds such

that (N,h) has negative sectional curvature. Then in every homotopy class of maps

[M → N ] there exists a smooth harmonic map f : (M, g) → (N,h). Furthermore,

provided f does not map onto a closed geodesic in N, it is unique.

Remark: The existence statement above is due to Eells-Sampson, while the

uniqueness is due to Hartman [Har67].

In our setting, The above Theorem becomes:

Theorem 1.3. There exists a unique harmonic map f : (Σ, h0)→ (Σ, h) homotopic

(even isotopic) to the identity.

In conformal coordinates, the Euler-Lagrange equations (1.1) take the form

∂f

∂z∂z
+ 2e−v

∂

∂z

(
ev(f)

) ∂f
∂z

∂f

∂z
= 0.

The form of this equation exposes a crucial invariance:

• In the case that the domain is a surface, the harmonic map depends only on

the conformal class of the metric. This follows since the metric h0 appears

nowhere, only the conformal coordinate z.

For this reason, a harmonic map from a surface is linked to the holomorphic

geometry of the surface. This is made precise by the following Proposition due to

Hopf [Hop54],

Proposition 1.4. Define a quadratic differential by,

φ := φ(z)dz2 = h

(
∂f

∂z
,
∂f

∂z

)
dz2.

If f is harmonic, then φ is holomorphic.



HARMONIC MAPS - FROM REPRESENTATIONS TO HIGGS BUNDLES 3

Written in the conformal coordinates,

φ(z) = e2v(f(z)) ∂f

∂z

∂f

∂z
.

The φ associated to a harmonic map f is called the Hopf differential. This defines

a map, which depends on a choice of conformal structure σ ∈ T in the Teichmüller

space of isotopy classes of conformal structures on the surface:

Nσ : F −→ QD(Σ, σ) := H0((Σ, σ),K2)

h 7−→ Hopf differential of unique harmonic map.

Here we make the distinction between the Tiechmüller space T and the Fricke

space F of isotopy classes of hyperbolic metrics on Σ. The two are only identi-

fied after making the transcendental identification afforded by the Köebe-Poincaré

uniformization Theorem.

The fundamental theorem which allows one to ”do” Teichmüller theory with this

approach is due to the efforts of many mathematicians, we mention Wolf [Wol89]

and refer to the references therein:

Theorem 1.5. For each σ ∈ T , the map

Nσ : F −→ H0((Σ, σ),K2)

is continuous, injective and proper. Hence it is a homeomorphism since the latter

space of sections is a vector space.

Remark: In fact, the mapping is real analytic (due to the fact that the harmonic

map depends real analytically on parameters) for the real analytic structure on the

Fricke space induced by its incarnation as a component of the character variety

χ(π,PSL (2,R)) = Hom (π,PSL(2,R)) /PSL(2,R).

The proof outlines as follows: the continuity follows from the well-posedness of

solutions to the harmonic map equations, i.e. solutions depend continuously on the

data. The injectivity follows from an easy application of the maximum principle,

once an equation has been concocted to which it can be applied. The properness

is the only piece requiring specific consideration and can be found in the paper of

Wolf [Wol89]. Morally, it is proper because it takes more ”energy” to stretch a

hyperbolic surface onto one which far away from it in the Fricke space.

Remarkably, Hitchin [Hit87], Simpson [Sim92], Donaldson [Don87], and Corlette

[Cor88] discovered that this is part (a base case!) of a profound correspondence:

{ X closed, Kähler manifold }−→ { Reductive representations of π1(X) into a

reductive Lie group } −→ { Holomorphic objects over X }.

The particularly ingeniuous leap stems from the fact that in our above discus-

sion of harmonic maps and Fricke-Teichmüller theory, we are missing part of the

holomorphic objects over X alluded to in the diagram above. These holomorphic

objects are named Higgs bundles. The Hopf differential is a remnant of the Higgs

bundle which we will construct for any reductive representation ρ : π → SL(n,C).

Before we tackle this, we must recall the basic calculus of vector bundles.
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2. Calculus on Vector Bundles: metrics and connections on bundles

A thorough reference for the following material is Kobayashi’s book [Kob87].

Let M be a smooth, closed manifold and V → M a smooth real or complex

vector bundle over M. We denote the C∞(M)-module of smooth sections of V by

Γ(V ).

Definition 2.1. A connection (or covariant derivative) is a first order differential

operator

∇ : Γ(V )→ Γ(T ∗M ⊗ V )

satisfying:

∇(s+ s′) = ∇s+∇s′

∇fs = df ⊗∇s+ f∇s

for all s, s′ ∈ Γ(V ) and f ∈ C∞(M).

Given two connections ∇,∇′, the difference satisfies

∇−∇′(fs) = f(∇−∇′)s.

Hence, ∇ − ∇′ ∈ Ω1(End(V )) where Ω1(End(V )) is the space of one-forms on M

with values in the endomorphisms of V. In slightly fancy language, the space of

connections on V, denoted A(V ), is an affine space with underlying vector space of

translations Ω1(End(V )).

Given ∇ ∈ A(V ), there exists a skew-symmetric extension called the exterior

covariant differential operator associated to ∇ :

d∇ : Ωk(V )→ Ωk+1(V )

where Ωk(V ) is the space of exterior differential k-forms with values in V. It is

defined by enforcing the graded Leibniz rule: given ω ∈ Ωk(M) and s ∈ Γ(V ),

d∇(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧∇s.

The introduction of this operator allows for a concise definition of the curvature

of a connection,

Definition 2.2. Given a connection ∇ ∈ A(V ), the curvature 2-form is defined by

F∇ := d∇ ◦ ∇ ∈ Ω2(End(V )).

Over a trivializing open set U ⊂ M, a section may be written s = siei. The

action of a connection ∇ is

∇s = (dsj + siAji )ej ,

where the connection coefficients Aji (relative to U) comprise a matrix of 1-forms

on U. Then the curvature of ∇ acts via

F∇(s) = si(dAki +Akj ∧A
j
i )ek.

Now supposeM is a complex manifold and V is a smooth, complex vector bundle.

The complexified co-tangent bundle of M splits into types

T ∗M ⊗R C = T (1,0)M ⊕ T (0,1)M.
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Definition 2.3. A pseudo-connection (or Cauchy-Riemann, or del-bar operator)

is a first order differential operator

∂V : Γ(V )→ Γ(T (0,1)M ⊗ V )

such that

∂V (s+ s′) = ∂V s+ ∂V s
′

∂V (fs) = ∂f ⊗ s+ f∂V s.

This operator also has a graded skew-commutative extension to an operator

which by abuse of notation we write the same way,

∂V : Ωp,q(V )→ Ωp,q+1(V ).

Similarly to connections, pseudo-connections are an affine space with underlying

vector space of translations Ω0,1(End(V )). The following integrability condition

shows the importance of such operators.

Theorem 2.4. Let (V, ∂V ) be a complex vector bundle with a pseudo-connection.

Then V has a holomorphic structure whose holomorphic local sections are exactly

those sections s satisfying ∂V s = 0 if and only if ∂
2

V = 0.

Note that in the case that the manifold M is a surface, the condition of the above

theorem is automatically satisfied since a Riemann surface carries no non-zero (0, 2)

forms. In particular, given any connection ∇ on V, we may define a holomorphic

structure via ∇0,1 = ∂V .

Now we introduce metrics on vector bundles.

Definition 2.5. An Hermitian metric on a complex vector bundle V is a smoothly

varying family of hermitian forms:

h : Vx ⊗ Vx → C

on each fiber Vx over x ∈M.

A connection ∇ ∈ A(V ) is called unitary with respect to an Hermitian metric h

if for all s, s′ ∈ Γ(V ),

dh(s, s′) = h(∇s, s′) + h(s,∇s′).

Supposing we have a holomorphic vector bundle (V, ∂V ) with an Hermitian met-

ric,

Proposition 2.6. There exists a unique unitary connection ∇ (called the Chern

connection) such that ∇0,1 = ∂V .

From here forward, we will fix a Riemann surface structure σ ∈ T and denote

the corresponding Riemann surface X = (Σ, σ). Given a representation ρ : π →
SL(n,C), form the associated flat vector bundle

Vρ := Σ̃×ρ Cn,

defined as a the quotient of Σ̃ × Cn via the diagonal (left) action of π acting on

the second factor via composition with the representation ρ. In a flat trivialization,

the flat connection is simply the exterior differential acting component-wise on a

(local) vector-valued function.
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Next, consider a ρ-equivariant map

f : Σ̃→ Xn,

where

Xn := {A ∈ SL(n,C) |A = A∗, det(A) = 1}

is an explicit model for the symmetric space SL(n,C)/SU(n). The left action of

SL(n,C) on Xn is given by

g ·A = (g−1)∗Ag−1.

Note that such an equivariant map exists since it is equivalent to a section of the

fiber bundle

Σ̃×ρ Xn

which has contractible fibers. Let 〈 , 〉 denote the standard Hermitian inner product

on Cn. Given a pair of sections of s, s′ ∈ Γ(Vρ), identify them with equivariant

vector-valued maps Σ̃→ Cn. For x ∈ Σ̃, f defines a pairing

Hf (s, s′)(x) = 〈s(x), f(x)s′(x)〉.

If γ ∈ π is acting by deck transformations,

Hf (s, s′)(γx) = 〈s(γx), f(γx)s′(γx)〉

= 〈ρ(γ)s(x), (ρ(γ)−1)∗f(x)ρ(γ)−1ρ(γ)s′(x)〉
= 〈s(x), f(x)s′(x)〉
= Hf (s, s′)(x).

Thus, Hf defines an Hermitian metric on Vρ. Conversely, given a metric H on Vρ,

select a positively oriented unitary frame {ei} over the base point x ∈ Σ̃. Parallel

translation using the flat connection gives a global section of the unitary frame

bundle which we will also denote {ei}. Then define a ρ-equivariant map,

f : Σ̃ −→ Xn

y 7−→ {H(ei(y), ej(y))}i,j=1,..,n.

The above two processes are inverse to one another.

Now, denote the flat connection on Vρ by ∇. Given an Hermitian metric on

Vρ, split the connection (uniquely) as a unitary connection A plus an Hermitian

endomorphism Ψ ∈ Ω1(End(Vρ)),

∇ = A+ Ψ.

The flatness of ∇ implies

0 = F∇ = FA + dAΨ +
1

2
[Ψ,Ψ].(2.1)

The first term is the curvature of the unitary connection A which by unitarity is a

2-form with values in skew-Hermitian endomorphisms. The second term is a 2-form

with values in Hermitian endomorphisms. Writing Ψ = αi ⊗ fi for αi ∈ Ω1(Σ) and

fi ∈ Γ(End(Vρ)),

dA(Ψ)(s) = dαi ⊗ fi(s)− αi ∧A(fi)(s)
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and A(fi) is defined in a trivialization via its action on sections s = sjej ,

A(fi)(s
jej) := A(sjfkijek)

= d(sjfkij)⊗ ek + sjfkijA
l
kel.

Lastly, the final term combines the wedge product on forms with the Lie bracket

(commutator) on endormorphisms;

[Ψ,Ψ] := αi ∧ αj ⊗ [fi, fj ].

The commutator of two Hermitian endomorphisms is skew-Hermitian, thus decom-

posing (2.1) into Hermitian and skew-Hermitian pieces yields a pair of equations:

FA +
1

2
[Ψ,Ψ] = 0,(2.2)

dAΨ = 0.(2.3)

Next, use the complex structure on X = (Σ, σ) to decompose the covariant deriva-

tive dA and Ψ according to type:

dA = ∂A + ∂
A
,

Ψ = φ+ φ∗H .

Above, φ ∈ Ω1,0(End(Vρ)), φ
∗H ∈ Ω0,1(End(Vρ)) with the latter adjoint defined

using the metric H and the type change given by sending dz to dz. Since there are

no (0, 2) nor (2, 0) forms on X, (2.2) and (2.3) simplify further,

FA + [φ, φ∗H ] = 0,(2.4)

∂
A

(φ) + ∂A(φ∗H ) = 0.

By the discussion about holomorphic structures, the operator ∂
A

induces a holo-

morphic structure on Vρ as well as End(Vρ). Wouldn’t it be nice if ∂
A
φ = 0, i.e. φ

is holomorphic?

Definition 2.7. The metric H is called harmonic if and only if ∂
A
φ = 0.

This definition is bolstered by the following crucial fact:

Proposition 2.8. H is harmonic if and only if the associated equivariant map

f : X̃ → Xn

is harmonic.

Remark: Harmonicity is defined with respect to any conformal metric on the

Riemann surface X̃ and the left-invariant Riemannian metric on Xn. Note that we

did not define harmonic for non-compact manifolds, nor for equivariant maps: the

energy to be minimized here is:

E(f) =
1

2

∫
D

‖df‖2dV

where D ⊂ X̃ is a fundamental domain for the action of π and dV is the volume

element of our chosen conformal metric on X.

The analog of the Eells-Sampson theorem in the equivariant case is the follow-

ing, first proved by Donaldson [Don87] in rank 2, then by Corlette [Cor88] in full

generality (see also Labourie [Lab91]).
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Theorem 2.9. Let ρ ∈ Hom(π,SL(n,C)). There exists a ρ-equivariant harmonic

map

f : X̃ → Xn

if and only if the Zariski closure of the image of ρ is a reductive subgroup of SL(n,C).

Furthermore, the map is unique up to post-composition by an element which cen-

tralizes the image of ρ.

A reductive subgroup is one which acts completely reducibly, via the adjoint

representation, on the Lie algebra sl(n,C). The prototypical non-reductive subgroup

is the subgroup of upper triangular matrices.

Let D(X) denote the space of gauge isomorphism classes of flat vector bundles

with harmonic metric (the De-Rham moduli space) and χ(Σ,SL(n,C)) the charac-

ter variety consisting of conjugacy classes of reductive representations π → SL(n,C)

(the Betti moduli space).

The above theorem yields a map, parameterized by a chosen point σ ∈ T ,

Nσ : χ(Σ,SL(n,C))→ D(X).

The above map has an obvious inverse given by taking the holonomy of the flat

connection which proves,

Theorem 2.10. There is a family of isomorphisms Nσ : χ(Σ,SL(n,C)) → D(X)

parameterized by a point σ ∈ T where X = (Σ, σ).

Remark: One way to think about this isomorphism is as a section of the bundle

over χ(Σ,SL(n,C)) whose fiber over ρ consists of the (isomorphism classes of)

Hermitian metrics on Vρ. Any smooth section of this bundle yields an identification

of the character variety with the space of reductive flat bundles equipped with the

metric picked out by the chosen section. This leads to an interesting (albeit vague)

question: is there another consistent choice of Hermitian metric on flat bundles

which yields a geometrically rich deformation space?

3. Higgs bundles

Finally, we introduce the notion of a Higgs bundle.

Definition 3.1. A rank-n Higgs bundle over X is a triple V = (V, ∂V , φ) where

(V, ∂V ) is a holomorphic vector bundle and φ ∈ H0(X,K ⊗ End(V )).

Remark: φ ∈ H0(X,K⊗End(V )) says exactly that φ is a holomorphic, endomorphism-

valued 1-form on X. The tensor φ is called the Higgs field.

Definition 3.2. A rank-n Higgs bundle V over a Riemann surface X is stable if

and only if for every φ-invariant holomorphic sub-bundle W ⊂ V,
deg(W )

rk(W )
<

deg(V )

rk(V )
.

V is poly-stable if there exists stable Higgs bundles W1, ...,Wk such that

V = W1 ⊕ ....⊕Wk.

The critical Theorem linking Higgs bundles to the story which has unfolded thus

far is due to Hitchin [Hit87] (in rank 2) and Simpson [Sim92] in general.
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Theorem 3.3. Let V = (V, ∂V , φ) be a poly-stable Higgs bundle such that det(V )

is the trivial holomorphic line bundle. Then there exists a unique (up to unitary

automorphism) Hermitian metric H on V such that the Chern connection A of H

satisfies

FA + [φ, φ∗H ] = 0(3.1)

Furthermore, if such a metric exists on any Higgs bundle V, then V is poly-stable.

Let M0,n(X) be the moduli space of degree 0, rank n, poly-stable Higgs bundles

with fixed trivial determinant (the Doulbeaut moduli space). Here, equivalence is

defined up to holomorphic automorphisms commuting with the Higgs field.

Note that we have already seen (3.1) in line (2.4); (3.1) is satisfied if and only if

the connection

A+ φ+ φ∗H

is flat. Furthermore, Theorem 2.9 implies that the holonomy of this flat connection

is reductive since the metric H is harmonic; namely ∂
A

(φ) = 0. This defines a map,

M0,n(X)→ χ(Σ,SL(n,C)).

Additionally, this map has an inverse since every reductive representation yields

a flat bundle with a harmonic metric, which in turn gives rise to a Higgs bundle

solving (3.1), thus a poly-stable Higgs bundle. Using suitable topologies (arising

from the C∞-topology on tensors and the topology of pointwise convergence on

representations) on the Dolbeaut and Betti moduli space, the following theorem is

called the Non-Abelian Hodge correspondence:

Theorem 3.4. The map described above yields a homeomorphism:

M0,n(X) ' χ(Σ,SL(n,C)).

Remark: It is very important to note that this homeomorphism:

(1) Depends on the point σ ∈ T in a complicated way.

(2) Passes through the transcendental procedure of constructing an equivariant

harmonic map.

A very interesting (to the author) future direction is to explore what the (well

developed) theory of harmonic maps into symmetric spaces might have to say about

the geometric nature of this isomorphism. A basic, but difficult question is the

following:

• Can one describe the space of all quasi-Fuchsian representations χ(Σ,SL(2,C))

purely in terms of the associated Higgs bundles?

The space M0,n(X) has many fascinating structures (complex symplectic, hyper-

Kähler, quasi-projective variety) which we will not explore here at all. We mention

two very important features:

(1) Sending φ → eiθφ not only preserves stability, but also preserves the har-

monic metric. This action descends to the space M0,n(X) and has fixed

points which are the critical sub-manifolds for a Morse-Bott function on

M0,n(X). This allows one, in a number of cases, to compute the rational

cohomology of M0,n(X) and in particular, the number of connected com-

ponents. This is one of the greatest success stories involving the theory
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of Higgs bundles, and is still an active area whose genesis lies in the epic

paper of Atiyah and Bott [AB83].

(2) Let (p2, ..., pn) be a basis of the conjugation invariant polynomials on End(Cn)

with deg(pi) = i. Then given a Higgs field φ,

pi(φ) ∈ H0(X,Ki)

and by the conjugation invariance this descends to a map:

F : M0,n(X)→
n⊕
i=2

H0(X,Ki)

called the Hitchin fibration. This is a proper map whose generic fibers are

Abelian varieties. With respect to a symplectic structure on M0,n(X), this

is actually a moment map for an algebraically completely integrable Hamil-

tonian system. Namely, there exists a maximal set of independent Poisson

commuting functions whose Hamiltonian vector fields generate flows which

lie on the level sets of the Hitchin fibration. Lastly, the H0(X,K2) entry

is the Hopf differential of the harmonic map associated to that poly-stable

Higgs bundle (exercise!).

4. Examples of Higgs bundles and construction of Hitchin component

We begin this section with the Higgs bundle ”version” of the first section of

these notes. Then we will close with Hitchin’s construction of what is now known

as the Hitchin component, a component of real representations of π into SL(n,R)

naturally containing the Fricke space of hyperbolic uniformizations of Σ.

As before, we fix a point σ ∈ T and denote X = (Σ, σ). Consider the short exact

sequence of sheaves

1→ Z2 → O∗ → O∗ → 1,

where the second arrow takes any locally holomorphic non-vanishing function f to

its square f2. The relevant segment of the long exact sequence in sheaf cohomology

is

H1(X,Z2)→ H1(X,O∗)→ H1(X,O∗)→ H2(X,Z2).

The arrow

w2 : H1(X,O∗)→ H2(X,Z2)

computes the mod 2-reduction of the degree (the second Steifel-Whitney class) of

the line bundle represented by a class in H1(X,O∗). Since the canonical bundle

of holomorphic 1-forms K has even degree equal to 2g − 2, it maps under w2 to

zero, hence, by the long exact sequence above, there exists a line bundle K
1
2 which

squares to K. Furthermore, there are

|H1(X,Z2)| = |Z2g
2 | = 22g

such inequivalent choices; pick one. Form the holomorphic rank-2 vector bundle

V = K
1
2 ⊕K− 1

2 .

Then,

K ⊗ End(V ) = K ⊕K2 ⊕O ⊕K
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whereby if α ∈ H0(X,K2),

φ =

(
0 α

1 0

)
is a well-defined Higgs field. Here, 1 is the constant function, a global section of

the sheaf O of holomorphic functions on X.

This is clearly holomorphic as each entry is holomorphic. Furthermore, there are

no non-zero φ−invariant sub-bundles unless α = 0 in which case the only invariant

sub-bundle is K−
1
2 which is of negative degree. Hence, (V, φ) is a stable Higgs

bundle. Additionally, det(V ) = O, thus Theorem 3.3 implies that there exists an

Hermitian metric on Hα on V with Chern connection Aα such that

FA = −[φ, φ∗H ].(4.1)

If the metric was not diagonal, then relative to the holomorphic splitting of V

an off diagonal entry would appear in the connection form of Aα, but this would

imply that the splitting was not holomorphic since the connection A is the Chern

connection. Thus, the metric has the form

Hα =

(
h
− 1

2
α 0

0 h
1
2
α

)
where hα is an Hermitian metric on the holomorphic tangent bundle K−1. Now we

compute,

φ∗H = H−1
α φ

T
Hα =

(
0 hα1

h−1
α α 0

)
.

Thus,

−[φ, φ∗H ] =

(
1− h−2

α αα 0

0 −1 + h−2
α αα

)
hαdz ∧ dz.

Note, h−2
α αα = ‖α‖2hα is a scalar-valued function; the norm of α with respect to

hα. The Chern connection takes the form

Aα =

(
1
2a
−
α 0

0 1
2aα

)
where aα is the connection 1-form of the metric hα on K−1. Thus, (4.1) reduces to

a single scalar equation:

F aα = −2(1− ‖α‖2hα)hαdz ∧ dz.

Let’s inspect what we have, when α = 0 the above equation reads

F aα = −2h0dz ∧ dz.

This immediately implies that the real part of h0 furnishes a metric of constant

sectional curvature −4 on the surface Σ. Thus, this special case of solving the

self-duality equations is equivalent to solving the uniformization theorem. Hitchin

[Hit87] showed much more:

Theorem 4.1. Consider the metric hα above on K−1. Then the expression,

ĥα = αdz2 + (1 + ‖α‖2hα)hαdzdz + αdz2
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defines a Riemann metric on K−1 which has sectional curvature equal to −4. This

assignment gives a parameterization of the Fricke space by the space of holomorphic

quadratic differentials.

Let us return briefly to the discussion at the beginning of these notes. The

following facts are a rewarding exercise for the interested reader:

• The holomorphic quadratic differential α is the Hopf differential of the

unique harmonic map isotopic to the identity between from (Σ, σ)→ (Σ, ĥα).

• The Hitchin map (choose the ad-invariant quadratic polynomial given by

minus the determinant) F : M0,2(X)→ H0(X,K2) takes the Higgs field

φ =

(
0 α

1 0

)
to α. Thus, the Hitchin fibration admits a section whose image picks out an

entire component of representations lying in the split real form of SL(2,C).

The moral of this story is that these examples of Higgs bundles are none other

than the Harmonic maps parameterization of the Fricke space dressed is slightly

fancier language (compare with [Wol89]). The strength of this language is that it

generalizes and reveals a wealth of structure which was hidden before exploiting

the holomorphic geometry.

5. The SL(n,R) Hitchin component

This section is a condensed presentation of the material in [Hit92].

We now arrive at the goal of these notes, the construction of the Hitchin com-

ponent for the linear group SL(n,R). In hindsight, this is a natural generalization

of the work in the previous section, and it shows the power of the Higgs bundle

theory to reveal new objects, which have turned out to be very geometric.

There is a unique n-dimensional irreducible representation of SL(2,C) given by

the action of SL(2,C) on homogeneous polynomials of degree n− 1 in 2 variables.

This representation is the (n−1)-th symmetric power of the standard 2-dimensional

representation. Recall the vector bundle above,

V = K
1
2 ⊕K− 1

2 .

The (n− 1)-th symmetric power of this vector bundle is given by

Sn−1(V ) = K
n−1
2 ⊕K

n−3
2 ⊕ ...⊕K−

n−3
2 ⊕K−

n−1
2 .

The Higgs field becomes

φ =



0 (n− 1) 0 · · · 0

α 0 2(n− 2) · · · 0

0 α 0 3(n− 3) · · · 0
...

. . .
. . .

...

0
. . . (n− 1)

0 0 · · · 0 α 0


.

Now, we have the liberty to do something with the Higgs fields: take (n−1) elements

(α2, α3, ..., αn) ∈
n⊕
i=2

H0(X,Ki).
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Form the new Higgs field, while keeping the holomorphic vector bundle Sn−1(V )

fixed,

φ̃ =



0 (n− 1) 0 · · · 0

α2 0 2(n− 2) · · · 0

α3 α2 0 3(n− 3) · · · 0
...

...
. . .

. . .
. . .

...

αn−1
. . . (n− 1)

αn αn−1 · · · α3 α2 0


.

A linear algebra calculation (a more clever argument can be found in Hitchin’s

paper [Hit92]) shows that the Higgs bundle (Sn−1(V ), φ̃) is Higgs stable. Thus,

the Theorem of Hitchin and Simpson (Theorem 3.3) guarantees the existence of an

Hermitian metric H with Chern connection A such that the self-duality equations

are satisfied.

The first question we wish to attack is the following: what are the properties of

the holonomy of the flat connection

B = A+ φ̃+ φ̃∗H?

For this we will use the following very important Proposition (see [Hit92], [Sim92]).

Proposition 5.1. Let ρ ∈ χ(Σ,SL(n,C)) correspond to a Higgs bundle (V, φ).

(Here the holomorphic structure on V is implicit). Then the Higgs bundle (V ∗, φt)

corresponds to the conjugate representation ρ.

Thus, fixed points (up to holomorphic automorphism conjugating the Higgs field)

of the involution

η : (V, φ) 7→ (V ∗, φt)

correspond to real representations.

Returning to our Higgs bundle (Sn−1(V ), φ̃), the anti-diagonal holomorphic au-

tomorphism 
0 0 · · · 1

0 · · · 1 0
... . .

. ...

0 1 · · · 0

1 0 · · · 0


maps it to (Sn−1(V )∗, φ̃t). Hence, on the moduli space of Higgs bundles it is fixed

by the involution η. Thus, by the previous Proposition 5.1 the holonomy of the flat

connection B to which this Higgs bundle corresponds takes values in SL(n,R).

Next, we wish to show that we have constructed an entire component of real

representations: the Hitchin component. There is a basis of conjugation invariant

polynomials {p2, ..., pn} such that

pi(φ̃) = αi.

Using these to define the Hitchin fibration, we have constructed a section

s :

n⊕
i=2

H0(X,Ki)→M0,n(X).
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Simply by virtue of being a section, the map s is injective and has closed, con-

nected image. An additional argument (see [Hit92]) shows that s takes values in

the smooth part of the moduli space of Higgs bundles. Also, the differential of s

is injective. Thus, using the implicit function theorem, the image of s is a closed,

connected sub-manifold of M0,n(X). Using Corlette’s theorem to identity Higgs

bundles with reductive representations, we obtain a closed, connected sub-manifold

of χ(Σ,SL(n,R)).

At a smooth point of the character variety χ(Σ,SL(n,R)), the index theorem

can be used to show that its dimension is |χ(Σ)| × dim(SL(n,R)). Meanwhile, a

calculation employing the Riemann-Roch theorem yields that the dimension of the

Hitchin base is equal to,

dim

(
n⊕
i=2

H0(X,Ki)

)
= |χ(Σ)|

n−1∑
i=1

(2i+ 1)

= |χ(Σ)|(n2 − 1)

= |χ(Σ)|dim(SL(n,R)).

Remarkably, this is the same as the dimension of the character variety χ(Σ,SL(n,R))!

Thus, the section s which was previously known to be an immersion is a submer-

sion as well. Applying the inverse function theorem, the image of s is open. As we

already know it is closed and connected, this proves that the image of s is a single

component of χ(Σ,SL(n,R)). This is the component which Hitchin identified that

is now known as the Hitchin component.

We close with a question: How can we infer geometric properties of the repre-

sentations in the Hitchin component from differential-geometric properties of the

equivariant harmonic map, or equivalently, from the harmonic metric on the asso-

ciated flat bundle? For example, are there identifiable properties of the harmonic

map which guarantee the representation is discrete?

At least for the author, these types of questions are some of the most fascinating

surrounding the theory of Higgs bundles. Even in the rank 2 case, the situation is

still very murky.
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