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Abstract

These are some brief notes on surface groups actions on complex
hyperbolic space, mainly work of Domingo Toledo, and generaliza-
tions.

1 Hyperbolic space

We begin with motivation from hyperbolic space. First, the definition
most useful to our generalization. Let q be the quadratic form on
Rn+1 given by

q(α1, . . . , αn+1) = α2
1 + · · ·+ α2

n − α2
n+1.

The associated symmetric matrix is

B = diag(1, . . . , 1,−1),

and we also use B to denote the associated symmetric bilinear form
on Rn+1. The Klein model of hyperbolic space Hn is then

Pn =
{

lines ` ⊂ Rn+1 : q|` is negative
}
⊂ RPn.

The metric1 is

d(x, y) = 2cosh−1

(
B(u, v)√
q(u)q(v)

)
,

where u, v ∈ Rn+1 are vectors representing the lines x, y ∈ RPn. No-
tice that q(u), q(v) < 0, but the square root is real.

1The factor of 2 makes the curvature −1.
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Exercise 1. Show that d is well-defined.

Exercise 2. Identify Pn with the unit ball and upper half space models.

Exercise 3. Show that the ideal boundary of Pn is the set of q-isotropic
lines, {` ⊂ Rn+1 : q|` = 0}.
Exercise 4. Show that the (orientation-preserving) isometry group of
Pn is exactly PO0(n, 1), the connected component of 1 in the group
of projective transformations of Rn+1 that fix q.

Exercise 5. When is PO(n, 1) connected?

Now, we consider a (closed) surface group Σ (of genus g ≥ 2)
and homomorphisms Σ → PO0(n, 1). We start with the case n = 2.
Fix a hyperbolic structure, i.e., a discrete and faithful representation
ρ0 : Σ → PO0(2, 1), and let S = H2 /ρ0(Σ). The following exercise
(see [6]) is important motivations for our generalizations to complex
hyperbolic space.

Exercise 6. Given ρ : Σ→ PO0(2, 1), build a ρ-equivariant H2-bundle
Eρ over S with fiber H2 with the following property. Let volρ be
the PO0(2, 1)-invariant extension of the volume form on H2 to Eρ by
pushing it along fibers. Then given any section σ of Eρ the number

vol(ρ) =
∫
S
σ∗ volρ

is independent of σ.

In this thesis [5], Goldman showed that vol(ρ) is related to the
Euler number of a certain bundle. Using this, he proved the following.

Theorem 1. Let Σ be the fundamental group of a closed surface S of
genus g ≥ 2, and ρ : Σ→ PO0(2, 1) any representation. Then

1. vol(ρ) ∈ 2πZ;

2. | vol(ρ)| ≤ 2π(g − 1);

3. | vol(ρ)| = 2π(g − 1) = vol(S) if and only if ρ is Fuchsian, i.e.,
ρ is the holonomy of a complete hyperbolic structure on S;

4. vol(ρ1) = vol(ρ2) if and only if ρ1 can be deformed into ρ2, that
is, if and only if ρ1 and ρ2 lie in the same connected component
of Hom(Σ,PO0(2, 1)).

This is a remarkable rigidity theorem, especially for something
as non-rigid as the fundamental group of a surface. The representa-
tions with | vol(ρ)| < 2π(g − 1) are very poorly understood. That the
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extremal representations are the most rigid and geometrically signifi-
cant2 is a recurring theme in these notes.

Before complexifying, we consider Hn for higher n. To start, there
are some easy representations Σ→ PO0(n, 1), namely, representations
that factor

Σ→ SO0(2, 1)→ PO0(n, 1)

given by a totally geodesic embedding of H2 into Hn.

Exercise 7. Explain why H2 → Hn gives an embedding SO(2, 1) →
PO(n, 1) instead of PO(2, 1) → PO(n, 1). Hint: Think about how
the scalar matrices in O(n, 1) intersect, say, SO(2, 1). Explain this in
geometric terms via the normal bundle to H2 in Hn.

Exercise 8. When does a representation ρ : Σ → PO0(2, 1) lift to a
representation Σ→ SO(2, 1)?

If the map Σ→ SO0(2, 1) is (the lift of) a Fuchsian representation
of Σ, then we also call the representation Σ → PO0(n, 1) Fuchsian.
That is, Fuchsian representations of Σ into PO0(n, 1) are extensions
of Fuchsian representations into SO0(2, 1) via a totally geodesic em-
bedding H2 → H3.

Exercise 9. Describe the totally geodesic embeddings of Hm into Hn

(m < n) via subspaces of Rn+1 on which the restriction of q is positive
definite.

Fuchsian representations of Σ into PO0(n, 1) are, however, not
rigid for n ≥ 3. This is due to the existence of bending deformations.
Here is the sketch:

1. Write Σ as an amalgamated productG1∗〈γ〉G2 over Z by splitting
the surface S along an essential separating curve γ.

2. Take a Fuchsian representation ρ : Σ → SO0(2, 1) → PO0(n, 1)
with associated totally geodesic embedding f : H2 → Hn. Let
γ̃ ⊂ H2 be the axis of γ.

3. Let F be a fundamental domain for the action of Σ on H2 such
that γ̃ cuts F into two subdomains F1 and F2 associated with
each side of γ in S.

4. Let ft : H2 → Hn be a continuous family of totally geodesic
embeddings (t ∈ R) with f0 = f and ft(γ̃) = f0(γ̃).

2I think it’s fair to say that the Fuchsian representations into PO0(2, 1) are the most
significant representations of Σ.
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Figure 1: Local picture of a bending with γ̃ at the crease, F1 to the left, and
F2 to the right. It is from the wikipedia.com page on origami folds. (Ignore the
arrows.)

5. Use f(F1) and ft(F2) to define a one-parameter family ρt of rep-
resentations Σ→ PO0(n, 1). By letting G1 act with fundamental
domain3 F1 and G2 with fundamental domain F2. This defines
representations Gj → SO0(2, 1)→ PO0(n, 1).

6. By the universal property of amalgamated products, the repre-
sentations Gj → PO0(n, 1), which agree on γ, extend to a unique
homomorphism ρt : Σ→ PO0(n, 1).

Exercise 10. Prove that, for t sufficiently small, ρt is discrete, faithful
and, most importantly, not Fuchsian. Hint: Show that the Zariski
closure of ρt(Σ) is bigger than SO0(2, 1).

The important thing to take from this is that Fuchsian represen-
tations are highly non-rigid. In other words, one can easily deform
Fuchsian representations into non-Fuchsian representations.
Exercise 11. Describe these deformations in terms of conjugation of
ρ(G2) by the centralizer of ρ(γ) inside PO0(n, 1).

2 Complex hyperbolic space

The following is the complexification of the Klein model described
above. Also see [7]. Let h be the hermitian form on Cn+1 given by

h(α1, . . . , αn+1) = |α1|2 + · · ·+ |αn|2 − |αn+1|2.

The associated hermitian matrix is

B = diag(1, . . . , 1,−1),

and we also use B to denote the associated sesquilinear form on Cn+1.
The Klein model of complex hyperbolic space Hn

C is then

CPn =
{

complex lines ` ⊂ Cn+1 : h|` is negative
}
⊂ CPn.

3These are actually convex cores for fundamental domains.
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The metric is

d(x, y) = 2cosh−1

(
B(u, v)√
h(u)h(v)

)
,

where u, v ∈ Cn+1 are vectors representing the lines x, y ∈ CPn.

Exercise 12. Take real parts and show that there is a totally geodesic
embedding Hm → Hn

C for all m < n. Hint: Prove that your map
Hm → Hn

C is totally geodesic by showing that it is the fixed point set
of an involution.

Exercise 13. Show that CPn is holomorphically equivalent to the unit
ball in Cn. Conclude that H1

C is the Poincaré disk model of H2.

Exercise 14. Show that the ideal boundary of CPn is the set of h-
isotropic lines, {` ⊂ Cn+1 : h|` = 0}.
Exercise 15. Show that the (holomorphic) isometry group of CPn is
exactly PU(n, 1), the group of projective transformations of Cn+1 that
fix h. What is the full isometry group?

Exercise 16. For n = 2, show that the ideal boundary is the one-point
compactification of the 3-dimensional homogeneous space Nil. (Hint:
Show that the stabilizer of a point on the boundary has a natural
identification with Nil.)

Exercise 17. Show that the totally geodesic subspaces of Hn
C are either

Hm (m ≤ n) or Hm
C (m < n).

The most important thing to take away from the above is that
there are two types of totally geodesic embedding H2 → Hn

C. First
are the R-Fuchsian embeddings, which come from 3-dimensional real
subspaces of Cn+1 on which h defines a quadratic form of signature
(2, 1). Second are the C-Fuchsian representations, which come from
2-dimensional complex subspaces of Cn+1 on which h has signature
(1, 1); these are associated with holomorphic totally geodesic embed-
dings of the Poincaré disk into Hn

C.

Exercise 18. Show that R-Fuchsian representations of a closed surface
group Σ into Isom(Hn

C) are not rigid for n ≥ 3. Hint: Use Hn.

Exercise 19. Show that two copies of H1
C inside Hn

C are either dis-
joint or intersect in a single point. Use this to explain why there is
not version of the bending trick from §1 for C-Fuchsian representa-
tions. Hint: The intersection is (1) totally geodesic and (2) a complex
analytic subspace.
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One can also show that R-Fuchsian representations are not rigid
when n = 2, but that takes some more work [9]. We will see in §4
that C-Fuchsian representations are indeed rigid. In fact, they satisfy
extremal properties for the Toledo invariant, and are analogous to the
Fuchsian representations in Theorem 1.

3 The Gromov Norm

Before we define the Toledo invariant, we need the Gromov norm.
This will give us the bounded cohomology class that leads to our
replacement for vol(ρ) in §1. You should know something about this
anyways. See [8] for tons more. We begin with the treatment of [3].

Let X be a topological space. For a singular chain z =
∑
aiσi ∈

C∗(X), the L1 norm is given by ‖z‖1 =
∑
|ai|. We then have a pseudo-

norm on H∗(X,R) (here, a map H∗(X,R) → R+ ∪ {0} satisfying the
usual properties) by

‖x‖1 = inf{‖z‖1 : z a chain representing x}.

Similarly, if c ∈ C∗(X) is a singular cochain, we have the sup-norm

‖c‖∞ = sup{|c(σ)| : σ a (singular) simplex on T}.

Then, for a class α ∈ H∗(X,R), we obtain a pseudo-norm (here, a
map H∗(X,R)→ R ∪ {∞} satisfying the usual properties) by

‖α‖∞ = inf{‖c‖∞ : c a cochain representing α}.

We leave some basic but fundamental properties as exercises.

Exercise 20. For all x ∈ H∗(X,R) and α ∈ H∗(X,R),

|α(x)| ≤ ‖x‖1‖α‖∞.

Exercise 21. If f : X → Y is continuous, then ‖f∗α‖∞ ≤ ‖α‖∞ for
all α ∈ H∗(Y,R) and ‖f∗x‖1 ≤ ‖x‖1 for all x ∈ H∗(X,R).

Exercise 22. If X is a metric space of nonpositive curvature, we need
only consider geodesic simplices (i.e., simplices with geodesic edges).

Of fundamental importance for us is the following fact, proved in
[8].

Proposition 2. Let [S] be the fundamental class of a closed Riemann
surface S of genus g ≥ 2. Then ‖[S]‖1 = 4(g − 1) = −2χ(S).
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Proof. Choose a hyperbolic metric on S and represent [S] as
∑
riσi,

where σi is a geodesic triangle on S. By Gauss–Bonnet,∑
ri vol(σi) = −2πχ(S).

Since all triangles have area at most π, we get

2π|χ(S)| ≤
∑
|ri|π,

so ‖[S]‖1 ≥ 2|χ(S)|.
It remains to show that ‖[S]‖1 ≤ 2|χ(S)|. Choose the hyperbolic

metric associated with the hyperbolic 2g-gon. We can then triangulate
S by 4g geodesic triangles, so ‖[S]‖1 ≤ 2|χ(S)| + 2. However, we
can apply this same triangulation trick to a k-fold covering, which
represents k[S], i.e., the pullback to S of the fundamental class of the
covering, by 2k|χ(S)|+ 2 triangles. Thus

‖k[S]‖1 ≤ 2k|χ(S)|+ 2

which implies that

‖[S]‖1 ≤ 2|χ(S)|+ 2
k
.

As k → ∞, we get ‖[S]‖1 ≤ 2|χ(S)|, and this proves the proposition.

4 The Toledo Invariant

For hyperbolic Riemann surfaces, there is a PO0(2, 1)-invariant 2-
form ω on H2 that is a Kähler form. For any Riemann surface S =
Γ\H2, the volume form on S is (up to a constant) the projection
ωS ∈ H2(S,R) of ω to S. Similarly, the metric on Hn

C is associated
with a PU(n, 1)-invariant 2-form ω on Hn

C. Given any closed complex
hyperbolic n-manifold M = Γ\Hn

C, the projection ωM ∈ H2(M,R)
is a nontrivial 2-form such that ωnM ∈ H2n(M,R) is a multiple of the
volume form; in particular, it is nontrivial.

Let ρ : Σ→ PU(n, 1) be a representation. We can then define a ρ-
equivariant continuous map f : H2 → Hn

C using the ρ-orbit of a point
along with negative curvature. We then define the Toledo invariant

τ(ρ) =
∫
S
f∗ω.
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Exercise 23. Show that τ(ρ) is independent of the choice of f . Hint:
Think about the associated bundle and Exercise 6.

We then have the following fundamental result, due to Toledo.

Theorem 3 (Toledo [10]). Let Σ be a closed surface group of genus
g ≥ 2 and ρ : Σ→ PU(n, 1) be a representation. Then

|τ(ρ)| ≤ 2|χ(S)|.

Sketch of proof. We give the proof from [3]. The original proof uses
harmonic maps and the so-called Bochner method.

The first step is to prove that
∣∣∫

∆ ω
∣∣ ≤ π for any triangle ∆ in Hn

C.
One difficulty worthy of mention is that Hn

C has variable curvature, so
there is a nontrivial moduli space of PU(n, 1)-isomorphism classes of
triangles. The result is relatively clear when ∆ is a geodesic triangle
in a holomorphically embedded H2 ⊂ Hn

C. The key is proving that
this is the extremal case4.

It follows that ‖f∗ω‖∞ ≤ π. From the above properties of the
Gromov norm,

|τ(ρ)| = |f∗(ω)([S])| ≤ ‖f∗ω‖∞‖S‖1 ≤ 2|χ(S)|,

which proves the theorem.

Theorem 4 (Toledo [11]). Let Σ be a closed surface group of genus
g ≥ 2 and ρ : Σ→ PU(n, 1) a representation. Then |τ(ρ)| = 2|χ(S)| if
and only if ρ is Fuchsian with respect to a holomorphic totally geodesic
embedding H2 = H1

C → Hn
C.

Sketch of proof. The key point is proving that ρ(Σ) fixes such a totally
geodesic subspace. That ρ is Fuchsian basically follows from Theorem
1 along with properties of the Gromov norm. Using some technical
estimates along with the strict negative curvature of Hn

C, one obtains
a measurable mapping dρ : ∂H2 → ∂Hn

C. One then proves that if
∆ is a (possibly ideal) triangle in Hn

C with
∫

∆ ω = π, then ∆ is an
ideal triangle in H1

C ⊂ Hn
C. Applying this to arbitrary triples of points

on dρ(∂H2) shows that almost every triple of points lie on the ideal
boundary of a fixed H1

C ⊂ Hn
C. This line is ρ(Σ)-invariant, which gives

the theorem.
4For example, if ∆ is a triangle in a ‘real’ totally geodesic H2 → Hn

C, then ω|∆ ≡ 0,
so the integral is trivial. In a certain sense, all other cases interpolate between these two
extremes.

8



Remark. The basic idea of the proof is related to certain proofs of
many rigidity theorems, e.g., Mostow rigidity, in that the important
technical step is producing a measurable mapping of ideal boundaries
that satisfies nice properties.

5 Generalizations

Over the last ten or fifteen years, there has been a great deal of
progress on various generalizations of Toledo’s result. First, instead
of a Riemann surface, i.e., a complex hyperbolic 1-manifold, we can
try to generalize Toledo’s results to higher-dimensional complex hy-
perbolic manifolds. One such result from the same era as Toledo’s
work was the following rigidity theorem of Goldman–Millson [4].

Theorem 5. For any 1 < m ≤ n, let Γ < SU(n − 1, 1) be a torsion
free lattice and ρ : Γ → SU(n − 1, 1) → PU(n, 1) be a representation
given by factoring the natural representation of Γ into SU(n − 1, 1)
into PU(n, 1) via a totally geodesic embedding Hn−1

C → Hn
C. Then Γ

is infinitesimally rigid, i.e., any small deformation of Γ also stabilizes
a totally geodesic Hn−1

C ⊂ Hn
C.

In particular, the ‘Fuchsian’ representations of Γ form a connected
component of Hom(Γ,PU(n, 1)). Soon thereafter, Corlette proved the
following generalization [2].

Theorem 6. Let M be a compact complex hyperbolic manifold of
(complex) dimension m and fundamental group Γ. If n > m and
ρ : Γ → SU(n, 1) is a representation with vol(ρ) = vol(M), then ρ(Γ)
stabilizes a totally geodesic Hm

C ⊂ Hn
C.

Here, vol(ρ) is the pullback of ωm to H2m(M,R), where ω is the
Kähler class on Hn

C, so vol(ρ) generalizes the Toledo invariant. Since
vol(ρ) varies among a discrete set (e.g., by relation with a characteris-
tic class), this is a strong generalization of the Goldman–Millson result
stated above. In particular, the infinitesimal rigidity of Goldman–
Millson, analogously to the case of surface group representations,
passes to the entire connected component of the ‘Fuchsian’ represen-
tations.

Returning to surface groups, there are two types of generalizations.
First, one can allow noncompact surfaces, where similar rigidity re-
sults follow once one insists that certain regularity of the PU(n, 1)
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representation (these are so-called maximal representations). Instead,
one can replace Hn

C with some other hermitian symmetric space, i.e.,
a symmetric space with a ‘nice’ complex structure. To start down
either of these paths, see [1].
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