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This article is a summary of the content in Section 7 to 10 of [3]. Let Γ be a
word-hyperbolic group. The goal is to construct domains of discontinuity for a given
Anosov representation ρ from Γ to a semisimple Lie group G. More specifically, we
want to construct an open, Γ-invariant subset Ω in a compact G-space on which Γ
acts properly discontinuously and cocompactly.

The general strategy for this construction is the following. In Section 2, we
first construct domains of discontinuity for representations of Γ into automorphism
groups of non-degenerate sesquilinear forms that are Anosov with respect to a
stabilizer of an isotropic line or a maximal isotropic subspace. Using this, we can
construct domains of discontinuity for Anosov representations of Γ into SL(n,K),
where K = R or C. This is described in Section 3. In Section 4 we demonstrate
how to generalize this construction for Anosov representations into a semisimple
Lie group. Finally, we end the article by mentioning in Section 5 some structural
results about these domains of discontinuity.
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1. Basics

We will start by giving a quick review of the general structure theory of semisim-
ple Lie groups. The main purpose of this review is to establish notation that will
be used in the rest of this article. For more details, one can refer to Chapter 2
of [2]. A brief description of this structure theory is also given in Section 3 of [3].
Let G be a semisimple Lie group and let g be its Lie algebra. Choose a Cartan
decomposition g = k + p and a maximal abelian subalgebra a ⊂ p. This gives us a
root space decomposition

g = g0 ⊕
⊕
α∈Λ

gα,

where Λ is the set of roots for a. By choosing a Weyl chamber of this root space
decomposition to be the positive Weyl chamber, we get a partition of Λ into the
set of positive roots, denoted Λ+, and the set of negative roots, denoted Λ−. This
also gives us a set of simple roots, denoted ∆ ⊂ Λ+. Define

A := exp(a),

n :=
⊕
α∈Λ+

gα

N := exp(n),

and let K be the maximal compact subgroup of G with Lie algebra k.
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Now, given any subset Θ ⊂ ∆, we can define a parabolic subgroup PΘ :=
MΘAN , where MΘ is the subgroup of K that fixes every element (via the adjoint
representation) in

⋂
α∈Θ ker(α). The Lie algebra of PΘ has a decomposition

pΘ =
⊕

α∈Λ+∪ΛΘ∪{0}

gα,

where ΛΘ is the set of roots that lie in the R-span of the simple roots in Θ. It is
known that any parabolic subgroup of G is conjugate to a parabolic subgroup PΘ

for some Θ.

2. Automorphism groups of non-degenerate sesquilinear forms

We will now describe the construction of domains of discontinuity for a very
special type of representation ρ : Γ→ G.

Notation 2.1. Let (V, F ) be a vector space over either R, C or H, equipped with a
non-degenerate quadratic form F such that

(1) F is either an indefinite symmetric form or a skew-symmetric form when
V is over R,

(2) F is either a symmetric form, a skew-symmetric form or an indefinite Her-
mitian form when V is over C,

(3) F is either an indefinite Hermitian form or a skew-hermitian form when V
is over H.

Denote the group of automorphisms of (V, F ) by GF (V ). Also, let F0 be the set of
isotropic lines in V and let F1 be the set of maximal isotropic subspaces in V .

One can check that GF (V ) acts transitively on both F0 and F1. Moreover,
the stabilizers of isotropic lines and maximal isotropic subspaces in GF (V ) are
parabolic subgroups. In fact, we can describe what these parabolic subgroups
are. The isotropic line stabilizers are conjugate to the parabolic subgroup P∆\α0

for some simple root α0, and the parabolic subgroup that stabilizes a maximal
isotropic subspace is conjugate to P∆\α1

for some simple root α1. The roots α0

and α1 can be explicitly described, but we will not do so here. (See Section 7.2 of
[3].) To simplify notation, we will denote P∆\αi

as Qi. Using the orbit-stabilizer
theorem, we can thus identify Fi with G/Qi. In this section, we will only consider
representations ρ : Γ→ G that are Qi-Anosov for some i = 0, 1.

Exercise 2.2. Work out what α0 and α1 are when G is O(2, 3), O(3, 3) and Sp(4,R).

Let F01 := {(D,P ) ∈ F0 × F1 : D ⊂ P}, and let πi : F01 → Fi be the obvious
projection. For any subset A ⊂ Fi, let KA := π1−i(π

−1
i (A)), and observe that if A

is closed in Fi, then KA is closed in F1−i. In particular, if ρ : Γ→ G is Qi-Anosov,
then we have a Γ-invariant Anosov map ξ : ∂∞Γ → Fi whose image is closed in
Fi, so Kξ(∂∞Γ) is closed in F1−i. Let Ωρ := F1−i \Kξ(∂∞Γ), and observe that Ωρ
is an open, Γ-invariant subset of F1−i. In [3], Guichard and Wienhard proved the
following theorem.

Theorem 2.3. (Theorem 8.6 of [3]) Let ρ : Γ→ G be a Qi-Anosov representation.
If Ωρ is nonempty, then Γ acts properly discontinuously and cocompactly on Ωρ.

We will now give a vague description of their proof. To prove the proper discon-
tinuity of the Γ action, they showed that the Qi-Anosovness of ρ implies that its
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image satisfies some proximality conditions, which gives us some control of the Γ
action on its limit set in Fi. This then gives us enough control of the Γ action on
Kξ(∂∞Γ) to prove that Γ acts properly discontinuously on the complement. For the
cocompactness of the action, they considered the orientable double cover Fori of
Fi. By making some suitable arrangements, they could assume without loss of gen-
erality that Γ is torsion free and the codimension of Kor

ξ(∂∞Γ) in For1−i is sufficiently

big. Hence, Γ\Ωorρ is a connected orientable manifold. Proving the cocompactness
of the action of Γ in Ωρ is equivalent to proving the compactness of Γ\Ωorρ , which in

turn is equivalent to proving that H0
c (Γ\Ωorρ ) (cohomology with compact support

and coefficients in R) is non-zero. This can be done using Poincaré duality and
long exact sequences of homology groups.

In the course of proving Theorem 2.3, several important properties of Kξ(∂∞Γ)

are used. The two most important ones are listed here.

Proposition 2.4. (Proposition 8.1 of [3]) Let ρ : Γ → G be a Qi-Anosov repre-
sentation with associated Anosov map ξ : ∂∞Γ→ Fi. Then π1−i : π−1

i (ξ(∂∞Γ))→
Kξ(∂∞Γ) is a homeomorphism.

This proposition is a consequence of the transversality property of the Anosov
map ξ. Also, it follows from this proposition that Kξ(∂∞Γ) ' π−1

i (ξ(∂∞Γ)) is a
locally trivial fiber bundle over ξ(∂∞Γ) ' ∂∞Γ. The fiber over a point t ∈ ∂∞Γ is
the set of lines through the origin in ξ(t) if i = 1, and is the set of maximal isotropic
subspaces containing ξ(t) if i = 0.

The next proposition computes the “codimension” of ∂∞Γ in F1−i. Here, the
dimensions of the topological spaces are cohomological dimensions for Čech coho-
mology.

Proposition 2.5. (Proposition 8.3 of [3]) Let ρ : Γ → G be a Qi-Anosov rep-
resentation. Let vcd(Γ) be the virtual cohomological dimension of Γ and let δ :=
dim(Fi−1)− dim(Kξ(∂∞Γ)). Then

• If G = O(p, q), U(p, q) or Sp(p, q) (with 0 < p ≤ q), then δ = q − vcd(Γ),
2q − vcd(Γ) or 4q − vcd(Γ) respectively.
• If G = O(2n,C) or O(2n− 1,C), then δ = 2n− vcd(Γ).
• If G = Sp(2n,R) or Sp(2n,C), then δ = n+ 1− vcd(Γ) or 2n+ 2− vcd(Γ)

respectively.
• If G = SO∗(2n), then δ = 4n− 2− vcd(Γ).

In particular, if δ > 0 then Ωρ is non-empty. To prove Proposition 2.5, we use
Proposition 2.4 to get that dim(Kξ(∂∞Γ)) = dim(M) + dim(∂∞Γ), where M is a
fiber π1−i. It is well-known result by Bestvina and Mess (see Corollary 1.4 of [1])
that dim(∂∞Γ) = vcd(Γ) − 1. Thus, computing dim(M) in each of the cases will
give us the statements in Propositon 2.5.

Exercise 2.6. Explicitly compute δ for a Q0-Anosov representation of the funda-
mental group of a closed surface with genus at least 2 into O(2, 3).

3. General strategy and the SL(n,K) case

We would like to use the domains of discontinuity constructed in Section 2 to con-
struct domains of discontinuity for Anosov representations into a general semisimple
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Lie group. The strategy to do so is the following. Let G be an arbitrary semisim-
ple Lie group and let ρ : Γ → G be a representation. We want to find a group
homomorphism φ : G→ GF (V ) such that

(I) φ ◦ ρ : Γ→ GF (V ) is Q0-Anosov (or Q1-Anosov),
(II) There is a maximal isotropic subspace T (or an isotropic line D resp.) in V

whose stabilizer in G is a proper subgroup of G.

Suppose that we have such a group homomorphism φ, then we can construct a
domain of discontinuity for ρ in the G-space G/AN as follows. (We only describe
the construction in the Q0-Anosov case. The Q1-Anosov case is similar.)

We can define the φ-equivariant injective map

φ0 :G/StabG(T )→ F0(V ) = GF (V )/Q0(3.1)

g · StabG(T ) 7→ φ(g) ·D

Moreover, condition (I) implies that we have an Anosov map ξφ◦ρ : ∂∞Γ→ F0(V )
for φ ◦ ρ. By Section 2, we have a domain of discontinuity Ωφ◦ρ in F1(V ) for φ ◦ ρ.

One can then check that Ωρ,V,T := φ−1
1 (Ωφ◦ρ) is an open subset of G/AN that is

stabilized by Γ, and on which Γ acts properly discontinuously and cocompactly.
This is the required domain of discontinuity.

Thus, we now only need to construct the homomorphism φ with the required
properties. The basic tool used to verify if φ satisfies the condition (1) is the
following proposition.

Proposition 3.1. (Proposition 4.4 of [3]) Let φ : G → G′ be a Lie group homo-
morphism. Let a+, a′+ be the positive Weyl chambers for G and G′ respectively,
and let ∆, ∆′ be the corresponding set of simple roots for G and G′ respectively.
Also, let W ′ be the Weyl group for G′. For any Θ′ ⊂ ∆′ , and let W ′Θ′ be the Weyl
group of L′Θ′ . Let Θ ⊂ ∆ and suppose that there exist w′ in W ′ and Θ′ ⊂ ∆′ such
that

φ∗(a+ \
⋃
α∈Θ

ker(α)) ⊂ w′ ·W ′Θ′ · (a′+ \
⋃

α′∈Θ′

ker(α′)).

Then for any P+
Θ -Anosov representation ρ : Γ → G, the representation φ ◦ ρ is

P ′
+
Θ′-Anosov.

The idea behind the proof of this proposition is to convert the contraction prop-
erties in the definition of an Anosov representation into more Lie group theoretic
conditions, so that it is easy to see whether the contraction is preserved when we
compose the Anosov representation ρ with a group homomorphism φ. Guichard
and Wienhard did this using what they call L-Cartan projections. For more details,
see Section 3.3 of [3].

Using Proposition 3.1 and some standard representation techniques, we can now
give explicit constructions (See Section 10 of [3]) of domains of discontinuity for all
Anosov representations into SL(n,K), where K is either R or C. We will briefly
describe how this is done.

From the definition of a P -Anosov representation, it is easy to see that every
P -Anosov representation is also PΘ1

∩PΘ2
-Anosov, where PΘ1

, PΘ2
is some pair of

maximal parabolic subgroups of G such that the opposite of PΘ1 is conjugate to
PΘ2 , and both PΘ1 and PΘ2 contain N . If we choose a to be the set of diagonal
matrices in sl(n,K) and n to be the upper triangular matrices in sl(n,K), then in
the standard basis, there is some k such that PΘ1

is the stabilizer of the subspace
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spanned by the first k basis vectors and PΘ2
is the stabilizer of the subspace spanned

by the first n − k basis vectors. In this case, it is clear that the natural map

φ : SL(n,K) → O(End(
∧k

Kn), tr) satisfies condition (I), and we can check that
it satisfies condition (II) using Proposition 3.1. Thus, we can construct domains of
discontinuity for P -Anosov representations to SL(n,K) for any proper parabolic
subgroup P in SL(n,K).

Exercise 3.2. Consider the case when G = SL(5,R). List all the possible parabolic
subgroups of the form PΘ1

∩PΘ2
as described above. Also, give explicit descriptions

of the domains of discontinuity for PΘ1
∩PΘ2

-Anosov representations for all possible
PΘ1 ∩ PΘ2 .

4. Generalization to other semisimple Lie groups

To further extend this to the case of a general semisimple Lie group G, we use
the following proposition.

Proposition 4.1. (Proposition 4.3 of [3]) Let φ : G → SL(V ) be an irreducible
finite dimensional linear representation of G. Let V = D⊕H be a decomposition of
V into a line and a hyperplane, and set Q+

0 = StabSL(V )(D), Q−0 = StabSL(V )(H).

Suppose that (P+, P−) = (StabG(D),StabG(H)) is a pair of opposite parabolic
subgroups. Then a representation ρ : Γ → G is (P+, P−)-Anosov if and only if
φ ◦ ρ : Γ→ SL(V ) is (Q+

0 , Q
−
0 )-Anosov.

This is in fact a specialization of Proposition 3.1 to the case when φ is irreducible
and G′ = SL(V ) for some finite dimensional vector space V .

To use this proposition, we need to build, for any semisimple Lie group G and any
proper parabolic subgroup P ⊂ G, an irreducible representation φ : G → SL(V )
such that P = StabG(D) for some line D in V . This is not difficult to do using
some standard representation theory. For instance, one can simply take V =

∧p
g,

where g is the lie algebra of G and p is the dimension of the Lie algebra p of P .
Now, given a P -Anosov representation ρ : Γ → G, where G is a semisimple

Lie group and P is a proper parabolic subgroup of G, we first construct an irre-
ducible representation φ1 : G→ SL(V ) satisfying the conditions in Proposition 4.1.
Then φ1 ◦ ρ is Anosov with respect to a line stabilizer, which is a proper parabolic
subgroup of SL(V ). By the last paragraph of Section 3, we can then construct a
representation φ2 : SL(V ) → O(End(Kn), tr) so that φ2 ◦ φ1 ◦ ρ is Anosov with
respect to the stabilizer of an isotropic line in (End(Kn), tr). Here, K = C if V is
a complex vector space and K = R if V is a real vector space. Then one can check
that φ = φ2 ◦ φ1 satisfies conditions (I) and (II), so we can use φ in the general
strategy given at the start of Section 3 to obtain a domain of discontinuity for ρ.

5. Structure of the domain of discontinuity

Guichard and Wienhard also managed to obtain several results about the struc-
ture of these domains of discontinuity. We will end this article by mentioning two
such results.

The first is an attempt to generalize Proposition 2.5 to the setting when G is
an arbitrary semisimple Lie group. This is difficult to do in general, but in the
cases where the virtual cohomological dimension of Γ is one or two, there are some
concrete conditions to determine when the domain of discontinuity we constructed
is nonempty. The main theorem in this direction is the following.
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Theorem 5.1. (Theorem 9.10 of [3]) Let ρ : Γ→ G be a P -Anosov representation
for which we can construct a domain of discontinuity, Ωρ,V,T ⊂ G/AN .

(1) If vcd(Γ) = 1, then Ωρ,V,T is non-empty.
(2) If vcd(Γ) = 2 and P contains every factor of G that is locally isomorphic

to SL(2,R), then Ωρ,V,T is nonempty.

The second result is about the topology of the quotient Γ\Ωρ,V,T . In general,
it is not easy to determine the topology of Γ\Ωρ,V,T , but we have the following
theorem.

Theorem 5.2. (Theorem 9.12 of [3]) Let ρ : Γ → G be a P -Anosov representa-
tion for which we can construct a domain of discontinuity Ωρ,V,T ⊂ G/AN . Let
HomP-Anosov(Γ, G) be the space of P -Anosov homomorphisms from Γ to G. Then
there exists an open neighborhood U of ρ in HomP-Anosov(Γ, G) such that

Γ\
⋃
ρ′∈U

Ωρ′,V,T ' U × (Γ\Ωρ,V,T )

as bundles over U .

In particular, the topology of Γ\Ωρ,V,T depends only on the connected component
of HomP-Anosov(Γ, G) containing ρ.

References

[1] M. Bestvina, G. Mess The boundary of negatively curved groups J. Amer. Math. Soc. 4 (1991),

no.3, 469-481.

[2] P. Eberlein Geometry of Non-positively Curved Manifolds Chicago Lectures in Mathematics,
1997, ISBN-10: 0226181987.

[3] O. Guichard, A. Wienhard Anosov representations: Domains of discontinuity and applications
Invent. Math. 190 (2012), no.2, 357-438.


