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Abstract

We demonstrate the equality, for divisible convex domains, of the Hölder regularity
of the boundary of the domain and the boundary of the dual domain.

0 Introduction

A convex open domain Ω in projective space P
n(R) is called divisible if there exists a

subgroup of PGLn+1(R) acting properly on the domain Ω with a compact quotient (this
terminology is due to Vey [12]).

Here, we are interested only in the case of Ω being sharp (fr. saillant), which means
that there exists a hyperplane H of P

n(R) such that H ∩ Ω = ∅ and moreover the domain
Ω is strictly convex, i.e. for all hyperplanes H not intersecting Ω, the closure Ω contains at
most one point of H. Such a domain Ω is called a strictly convex divisible domain. For an
introduction and most complete exposition of the properties of convex divisible domains,
see articles by Benoist [4, 5].

The first series of examples comes from convex projective structures on a compact surface
of genus g greater than two (a manifold is called convex if each homotopy class with fixed
endpoints has at most one geodesic). The universal cover of a surface is then identified
with a strictly convex divisible domain in projective space (see Theorem 3 of [9]). The most
powerful description of projective surfaces is given by Goldman and Choi [8, 6].

Other examples are given by compact manifolds of constant curvature -1, in which case
the domain Ω in P

n(R) is an ellipsoid, that is, the image in P
n(R) of the future cone of the

quadratic form q of signature (1, n), and the group Γ is a cocompact subgroup of SO(q).
The deformations of the projective structure of the quotient manifold M = Γ\Ω provide
non-trivial examples of strictly convex divisible domains; see for example Corollary 2.10 of
[5] and Remark 1.3 of [2].

In general, the boundary ∂Ω does not have the regularity of ellipsoids. However, it is
α-Hölder for some number 1 < α ≤ 2 (Proposition 4.6 of [5]). The supremum of these
numbers α is called the regularity of Ω. However, αΩ is equal to 2 only when the domain Ω
is an ellipsoid (Proposition 6.1 of [5]).

The point of this text is to demonstrate that for a strictly convex divisible domain Ω the
regularity of Ω and of the dual convex domain Ω∗ coincide (Theorem 4), which responds to
a question posed in [5]. The key point is to demonstrate that this regularity can be found
using the eigenvalues of the elements of Γ (Theorem 22).
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1 Convex Divisible Domains

This section repeats the definition of convex divisible domains and those of their properties
that will be useful to us below and for the main theorem.

Denote by V a real vector space of dimension n+ 1.

Definition 1. Let Ω be a domain in P(V ).
The domain Ω is called convex and divisible if it has the following properties:

1. Ω is a convex (that is, the intersection of Ω with any projective line is connected) and
sharp.

2. There exists a discrete subgroup Γ of PGL(V ) leaving Ω invariant such that the quo-
tient Γ\Ω is compact.

Remarks

• Throughout this text, we are interested in only the convex divisible domains that are
furthermore strictly convex, i.e. any hyperplane H that does not intersect Ω intersects
Ω in at most one point.

• Up to passing to a subgroup of finite index, the group Γ can be assumed to be torsion-

free (it is a classic result that the group Γ is finitely generated because it is discrete and
acts cocompactly on Ω. This allows the application of Selberg’s lemma to produce
a torsion-free subgroup of finite index [11]), and that the quotient M = Γ\Ω is a
compact manifold.

1.1 Dual Convex Domain

Definition 2. The dual Ω∗ of Ω is:

Ω∗ = { [f ] ∈ P(V ∗) | f(x) 6= 0 for all [x] in Ω }

If the domain Ω is sharp, then the dual Ω∗ is a non-empty convex domain.

Proposition 3. The following are equivalent:

1. Ω is a strictly convex divisible domain.

2. Ω∗ is a strictly convex divisible domain.

Proof. By definition the domain Ω is sharp, so the dual Ω∗ is non-empty and open. Fur-
thermore, it is clear that if the group Γ leaves Ω invariant, then the group tΓ leaves Ω∗

invariant.
The equivalence between the compactness of Γ\Ω and that of tΓ\Ω∗ is shown by Lemma

2.8 of [5]. Thus, Ω is divisible if and only if Ω∗ is divisible.
Furthermore, a convex divisible domain Ω is strictly convex if and only if the group

Γ is Gromov hyperbolic (Proposition 2.5 and Fact 2.4 of [5]). This shows the equivalence
between the strict convexity of the convex divisible domain Ω and that of its dual.

Since the domain Ω∗ is strictly convex, the boundary ∂Ω∗ is of type C1.
A strictly convex divisible domain has maximal regularity αΩ, which we will define

precisely in Section 3. The main theorem that we would like to show is the following.
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Theorem 4. Let Ω be a strictly convex divisible domain in P(V ), with the dual Ω∗ also
strictly convex and divisible by Proposition 3. The regularities of Ω and Ω∗ are equal:

αΩ = αΩ∗ .

Theorem 33 will make this theorem more precise and complete, notably through the
fact that the limit regularity is attained and the results concerning the geodesic flow on the
quotient Γ\Ω.

2 Hilbert Distance

Based on the definition of distance in hyperbolic space H
n, the following distance is defined

on a convex domain Ω:

for x and y in Ω,

{
dΩ(x, y) = 0 if x = y,

dΩ(x, y) = | log(a, b;x, y)| if x 6= y

x y b

a

Figure 1: The Hilbert metric

where a and b are the two points in the intersection of the projective line (x, y) with the
boundary ∂Ω (Figure 1), and (a, b;x, y) designates the cross-ratio of the four points a, b, x, y:

(a, b;x, y) =
x− a

x− b

y − b

y − a

The function dΩ satisfies the axioms of a distance.
This distance is a Finsler metric, defined by a continuous metric on the tangent fiber.

This distance has an associated geodesic flow, which is proven here to be Anosov (Section
4). The regularity of the geodesic flow and that of the boundary ∂Ω are related, and we
leave precise comments concerning this for Section 4.

We repeat the formulas for the metric and the geodesic flow. Let H be a hyperplane
such that P(H) does not intersect Ω, so that Ω can be identified with a convex relatively
compact domain of H and the tangent bundle TΩ with Ω ×H.

Let ω = (x, ξ) in TΩ; there then exist two points in the boundary, p+(ω) and p−(ω),
and two strictly positive numbers σ+(ω) and σ−(ω), see Figure 2, such that

ξ = σ+(ω)(p+(ω) − x),

ξ = σ−(ω)(x− p−(ω)).

The expressions for the norm of ω and the flow are then the following:

‖ω‖Ω = σ+(ω) + σ−(ω)
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φt · ω =

(
x+

et − 1

σ+(ω)et + σ−(ω)
ξ,

et

(σ+(ω)et + σ−(ω))2
ξ

)
.

The group Γ acts by isometries on (Ω, dΩ). In fact, the elements of Γ leave invariant the
domain Ω and its boundary ∂Ω, and the projective transformations preserve the cross-ratio.

3 α-Hölder Regularity and β-convexity

This section introduces the notions of α-Hölder regularity and β-convexity, and gives a
characterization of β-convexity for functions. We also recall results concerning the regularity
of the boundary of a strictly convex divisible domain.

4 α-Hölder Regularity

Definition 5. Let M be a hypersurface of class C1 in R
n. M is called α-Hölder of class

Cα for a real number α, 1 < α ≤ 2, if for all compact K ⊆ Ω there exists a constant CK

such that
d(x, TyM) ≤ CKd(x, y)

α for all x and y in K.

Remarks

• The distances considered here are given by the norm on R
n, and the tangent space

TyM is here implicitly considered an affine subspace of R
n.

• In the case of the manifoldM being the graph of a function f of class C1, this definition
is equivalent to (α-1)-Hölder continuity of the derivative of f . The function f is also
called α-Hölder.

Here, the boundary ∂Ω is naturally a hypersurface of a vector space, because the closure
of Ω is included in an affine patch of P(V ). We talk of the Cα regularity of ∂Ω, and the
definition does not depend on the affine patch considered (Hölder regularity is in fact a local
property).

We know that the boundary of strictly convex divisible domains is α-Hölder.

Proposition 6. (Proposition 4.6 of [5]) Let Ω be a strictly convex divisible domain in P(V ).
There exists a real number α, 1 < α ≤ 2 for which the boundary ∂Ω is of class Cα.

We set
αΩ = sup{α ≤ 2 | ∂Ω is of class Cα}.

By the proposition, αΩ is strictly greater than one. One of the consequences of what we
show is that the boundary of Ω is αΩ-Hölder, that is to say that the limit value is attained.

4.1 β-convexity

Definition 7. Let M be a hypersurface of class C1 of R
n. M is called β-convex for some

real number β more than or equal to two if, for all compact K in D, there exists a strictly
positive constant CK such that

d(x, TyM) ≥ CKd(x, y)
β for all x and y in K.

Remarks

• Again, this definition applies to the boundary ∂Ω.
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• If M is the graph of a C1 convex function f , β-convexity of M is equivalent to β-
convexity of f (see Defiition 10).

We will now connect this to Hölder regularity.

Lemma 8. Let Ω be a strictly convex sharp domain P(V ), Ω∗ its dual in P(V ∗), and α, β
such that 1 < α ≤ 2 ≤ β <∞, satisfying the equality

1

α
+

1

β
= 1.

Then the following are equivalent:

1. ∂Ω is β-convex;

2. ∂Ω∗ is Cα.

Proof. The proof uses the following two points:

• if Ω ⊂ Ω′, then Ω′∗ ⊂ Ω∗;

• (FALSE - Look up counterexample.) the dual of the domain

Ω1 = {[x, y, 1] ∈ P(R3) | |y| > |x|β}

is
Ω∗

1 = {[u, 1, v] ∈ P((R3)∗) | |v| > |u|α}.

This lemma combines with Proposition 6 to give the following proposition.

Proposition 9. Let Ω be a strictly convex divisible domain. Then there exists a real number
β ≥ 2, for which ∂Ω is β-convex.

We define
βΩ = inf{β ≥ 2 | ∂Ω is β-convex}.

By Lemma 8 we then have the relation

1

αΩ∗

+
1

βΩ
= 1.

During the rest of this text, we will prefer β-convexity. However, it is in terms of α-
Hölder regularity of the boundary and the regularity of the geodesic flow that one should
think of the results (cf. Section 4 and Theorem 22). We will show the following, equivalent
to Theorem 4:

βΩ = β∗
Ω,

where Ω is a strictly convex divisible domain and Ω∗ is its dual.
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4.2 β-convex functions

This paragraph provides a characterization (and a definition) of β-convex functions, which
will be useful in Section 5.

Definition 10. Let U be a convex domain in R
n, f : U → R a convex C1 function, β a real

number greater than or equal to two. The following two propositions are then equivalent:

1. There exists a strictly positive constant C1 such that, for all x and y in U ,

|f(y) − f(x) −Dfx(y − x)| ≥ C1‖y − x‖β ;

2. There exists a strictly positive constant C2 such that, for all x and y in U ,

∣∣∣∣f(y) + f(x) − 2f

(
x+ y

2

)∣∣∣∣ ≥ C2‖y − x‖β .

The function f is called β-convex if it satisfies these two conditions.

Proof. The proof of (1) ⇒ (2) is easy.
For the other direction, we may suppose x = 0 and Df0 = 0. Because the function f is

convex, for all y ∈ U , we have

f(0) + f(y) − 2f
(y

2

)
=

∣∣∣f(0) + f(y) − 2f
(y

2

)∣∣∣ ≥ C2‖y‖
β .

f(y) − f(0) ≥ C2‖y‖
β + 2

(
f

(y
2

)
− f(0)

)
.

By induction, for all n ∈ N
∗

f(y) − f(0) ≥ C2

n−1∑

k=0

2k(1−β)‖y‖β + 2n
(
f

( y

2n

)
− f(0)

)

The right side has a limit as n goes to +∞

lim
n→∞

2n
(
f

( y

2n

)
− f(0)

)
= Df0(y) = 0.

so

f(y) − f(0) −Df0(y)| = f(y) − f(0) ≥
C2

1 − 21−β
‖y‖β .

The constants satisfy C1 = C2/(1 − 21−β) > 0.

5 Geodesic flow

We repeat here, without proof, the regularities of the geodesic flow φt on the quotient
manifold M = Γ\Ω, where Ω is a strictly convex domain divided by a group Γ.
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5.1 The Anosov property

Definition 11. Let W be a compact manifold with a Riemannian metric ‖ · ‖W , and let φt

be a flow on W defined by a vector field X.

The flow φt is called Anosov if there exists a continuous decomposition of the tangent
bundle TW = E+⊕RX⊕E− fixed by the flow, and if there exist strictly positive constants
a and A such that, for all t > 0, v+ ∈ E+, v− ∈ E−, we have:

‖Dφ−t(v+)‖W ≤ Ae−at‖v+‖W and ‖Dφt(v−)‖W ≤ Ae−at‖v−‖W . (a)

The distribution E+ is called unstable, and the distribution E− is the stable distribution.
The supremum of the numbers a satisfying the inequalities (a) is denoted by aφ.
If the manifold W is compact, there exist strictly positive constants b and B such that,

for all t > 0, v+ ∈ E+, v− ∈ E−, we have

‖Dφ−t(v+)‖W ≥ Be−bt‖v+‖W and ‖Dφt(v−)‖W ≥ Be−bt‖v−‖W . (b)

The infimum of these numbers b is denoted by bφ.

5.2 Stable and unstable distributions

Let Ω be a strictly convex divisible domain and M = Γ\Ω the quotient manifold.
In this case, the distributions E+ and E− in T 1M for which the geodesic flow φt is

Anosov (see the following Proposition 12), are in fact explicit. Furthermore, there are lifts

Ẽ+ and Ẽ− of these distributions in the unit tangent bundle T 1Ω that are formulated even
more simply (Section 3.2.5 of [5]).

Let H be a hyperplane not intersecting Ω. The domain Ω can be identified with a domain
in H, the tangent bundle TΩ with Ω ×H, and, for all ω = (x, ξ) in TΩ, the tangent space
Tω(TΩ) with H ×H. We also use p+(ω), p−(ω), σ+(ω), σ−(ω) here as in Section 2. We will
also call H+

ω and H−
ω the hyperplanes tangent to ∂Ω at the points p+(ω) and p−(ω), Iω

their intersection, and finally Hω the hyperplane containing x and Iω (see Figure 3).
The unstable and stable distributions are then the following:

Ẽ+
ω = {v+ ∈ Tω(T 1Ω) | v+ = (y, σ−(ω)y) for y ∈ TxHω},

Ẽ−
ω = {v− ∈ Tω(T 1Ω) | v− = (y,−σ+(ω)y) for y ∈ TxHω}.

Furthermore, the action of the flow on these distributions admits the following geometric
description (Section 3.2.6 of [5]). Let ω = (x, ξ) in T 1Ω, ωt = φt · ω = (xt, ξt) the geodesic

passing through ω, and let v− = (y,−σ+(ω)y) be a point in Ẽ−
ω . We then have Dφt(v−) =

(yt,−σ
+(ωt)yt). The element yt is the unique vector in Txt

Hωt
such that the three points

x+ y, xt + yt and p+(ω) are collinear.

5.3 The geodesic flow is Anosov

Proposition 12. (Lemma 3.6 and Proposition 4.6 of [5]) Let Ω be a strictly convex divisible
domain, and Γ a group (assumed torsion-free) such that the quotient M = Γ\Ω is a compact
manifold.

The geodesic flow φt on the unit tangent bundle T 1M is then Anosov. The stable and
unstable distributions E− and E+ are as in the previous paragraph. We furthermore have
the following equivalences:

• the boundary ∂Ω is α-Hölder ⇔ the distribution E− is (α− 1)-Hölder;
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• if α > 1, the boundary is α-Hölder ⇔ the inequalities (a) are true for a = 1 − (1/α);

• the boundary is β-convex ⇔ the inequalities (b) are true for b = 1 − (1/β).

In particular, we have the equalities:

aφ = 1 −
1

αΩ
and bφ = 1 −

1

βΩ
.

One of the consequences of Theorem 22 will be that the limit values aφ and bφ are
attained and that aφ + bφ = 1.

5.4 The Anosov properties on closed geodesics

Let W be a compact manifold acted on by Anosov flow φt.
We will denote by a′φ the supremum of the numbers a such that the inequalities (a) are

satisfied restricted to the periodic orbits of the flow on W . In other words, for each a < a′φ
and for each closed orbit σ ⊂ W , there exists a constant A = A(a, σ) such that (a) is valid
for all for all t > 0, v+ in E+

|σ, v
− in E−

|σ. The constant A does not need to be constant

among all these orbits.
Perhaps the most striking consequence of the main Theorem 22 is the following corollary.

Corollary 13. With the hypotheses of the previous proposition and the above notation, we
then have the equality:

a′φ = aφ.

6 β - convexity and Hilbert distance

Since the Hilbert metric is defined by points of ∂Ω, it is natural to compare the properties
of ∂Ω and those of the distance dΩ. That is what we do in this section in connecting the
β-convexity of ∂Ω and the “shape” of the balls of the domain Ω in the Hilbert metric.

In this section, Ω denotes a sharp strictly convex domain of P(V ) (here Ω is not neces-
sarily assumed to be divisible).

6.1 Shape of the balls

For this section, we fix a strictly positive number r0. We are interested in the shape of the
balls in the Hilbert metric. If x0 belongs to Ω,

BΩ(x0, r0) := {x ∈ Ω | dΩ(x0, x) ≤ r0}.

To quantify this idea, let δ be a distance defining the topology on the closure Ω and
define, for a β more than or equal to two,

φδ
β :Ω −→ R

x0 7−→ φδ
β(x0) = inf

{
δ(x0, y)

δ(x0, x)β

∣∣∣∣ dΩ(x0, y) = dΩ(x0, x) = r0

}

=
inf{δ(x0, x) | dΩ(x0, x) = r0}

sup{δ(x0, y)β | dΩ(x0, y) = r0}

8



and

ψδ : [2,+∞) −→ R

β 7−→ ψδ(β) := inf{φδ
β(x0) | x0 ∈ Ω}.

Intuitively, we compare the length of the “minor axis” a = infy∈∂BΩ(y0,r0) δ(y0, y) and
the “major axis” b = supx∈∂BΩ(y0,r0) δ(y0, x), of the balls when the point x0 approaches the

boundary ∂Ω and, more precisely, if the ratio a/bβ stays small.
These functions depend on the chosen distance in the following manner.

Lemma 14. Let δ and δ′ be two equivalent distances on Ω. Then for all x0 in Ω,

1

C1+β
φδ

β(x0) ≤ φδ′

β (x0) ≤ C1+βφδ
β(x0),

where the constant C is the constant of equivalence of the distances:

for all x and y in Ω,
1

C
δ(x, y) ≤ δ′(x, y) ≤ Cδ(x, y).

The proof is direct. This lemma allows us to adapt the distances on Ω to the most
useful choice at each step, and shows that the statement “ψδ(β) is strictly positive” does
not depend on the distance δ.

We now describe the distances on Ω that we will use. Let H be a hyperplane in V
such that the intersection of P(H) and Ω is empty. The closure Ω is then identified with
a compact subset of H and is endowed with the metric δH induced by the norm ‖ · ‖H on
H. It is easy to see that the equivalence class of the metric thus defined depends neither on
‖ · ‖H nor on H.

6.2 β - convexity and the shape of the balls

The following proposition proves the connection with β-convexity.

Proposition 15. Let Ω be a sharp convex domain in P
n(R) and β a number greater than or

equal to two. If for (all) hyperplanes H, for which P(H)∩Ω = ∅, ψδH (β) is strictly positive,
and the boundary ∂Ω is β-convex.

Proof. The idea is approximately the following: allowing the ball to approach the boundary
(Figure 4), the “minor diameter” a becomes equivalent to Ky, where K is a constant, and
the “major diameter” b becomes equivalent to K ′x. Furthermore, by hypothesis, there exists
C such that a ≥ Cbβ . This implies the existence of a number C ′ such that y ≥ C ′xβ . The
rest of the proof makes this reasoning rigorous.

x

b

a

y

Figure 2: Idea of the proof.

The seek to apply point (2) of the definition of β-convex functions (Definition 10).
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We work in the affine patch defined by the hyperplane H. Let ‖ · ‖H be a Euclidean
norm in H.

Letting p0 be a point in ∂Ω, it suffices to prove the β-convexity in a neighborhood of p0

(the property is local). There exists a neighborhood U of p0 in the tangent space Tp0
∂Ω, a

neighborhood U ′ of p0 in the orthogonal Tp0
∂Ω⊥ ≃ R and a function f : U → U ′ satisfying:

• U × U ′ is a neighborhood of p0 in H;

• ∂Ω ∩ (U × U ′) = {(x, f(x)) | x ∈ U}.

The function f is convex because the domain Ω is convex. It is C1 because the boundary
∂Ω is C1.

l1

a

s

t

x p0 yx+ y

2

U

f(y)

f(x)

D

x0

a2

b
a1

BΩ (x0, r0)

Figure 3: β−convexity of the boundary

Let x and y be in U .
We denote by x0 the mean of (x, f(x)) and (y, f(y)), a1 one of the points of intersection

of the boundary ∂BΩ(x0, r0) (r0 being previously fixed) and the line passing through the
two points (x, f(x)) and (y, f(y)). Let us denote, for example, by a1 the point closer to y
and by a2 the point of the boundary ∂BΩ(x0, r0) with horizontal coordinate (x+y)/2 and
of smallest vertical coordinate.

The lengths a, b, s, t and D are indicated in Figure 5; D is the distance from x0 to the
second intersection point of the vertical line passing through x0 and the boundary ∂Ω.

Let us calculate dΩ(x0, a1):
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dΩ(x0, a1) = | log((x, f(x)), (y, f(y));x0, a1)|

=

∣∣∣∣log

(
x, y;

x+ y

2
, l1

)∣∣∣∣

=

∣∣∣∣log
t− s

t

t

t+ s

∣∣∣∣ ,

r0 = − log
t− s

t+ s
.

The second equation above comes from the invariance of the cross-ratio under projec-
tions. We then have

t = s
1 + e−r0

1 − e−r0
.

and on the other hand,

t =
‖x− y‖H

2
.

There then exists a constant C1, independent of x and y, such that

‖x− y‖β
H = C1s

β .

Furthermore, s is the smaller than ‖x0 − a1‖H = δH(x0, a1). We obtain

‖x− y‖β
H ≤ C1δH(x0, a1)

β . (c)

Likewise, we calculate dΩ(x0, a2):

dΩ(x0, a2) =

∣∣∣∣log
b+D

D

a

a− b

∣∣∣∣

wherea =

∣∣∣∣
f(x) + f(y)

2
− f

(
x+ y

2

)∣∣∣∣ .

Given the calculations, we have:

a = b
er0

er0 − 1 − (b/D)
.

It is also easy to see that the distance D, which is a continuous function of the pair (x, y)
belonging to U × U , is uniformly bounded below on U × U . Likewise, we can suppose by
restricting U that the distance b is bounded above by an arbitrarily small constant. There
then exists a strictly positive constant C2 independent of x and y such that

er0

er0 − 1 − (b/D)
≥ C2.

Since b is equal to δH(x0, a2), this shows that

f(x) + f(y)

2
− f

(
(x+ y)

2

)
≥ C2δH(x0, a2). (d)
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The inequalities (c) and (d) give ‘

1

‖x− y‖β
H

∣∣∣∣
(
f(x) + f(y) − 2f

(
x+ y

2

))∣∣∣∣ ≥
C2

C1

δH(x0, a2)

δH(x0, a1)β

≥
C2

C1
φδH

β (x0) ≥ 2
C2

C1
ψδH (β) = C

and C is a strictly positive number. Finally, for all x and y in U , we have

∣∣∣∣f(x) + f(y) − 2f

(
x+ y)

2

)∣∣∣∣ ≥ C‖x− y‖β

That is to say, f is β-convex.

RemarkWe similarly have the reciprocal proposition, i.e. β-convexity implies that ψδ(β) is
strictly positive, but this will not be used in this paper.

7 (r, ε)-loxodromic elements and the Hilbert distance

The point of this part is to give certain properties of the loxodromic elements. We will
use these properties in the proof of Theorem 22. We start by repeating the definitions of
proximal and loxodromic elements.

7.1 Proximality

A fixed Euclidean structure 〈·, ·〉 on V gives projective space P(V ) a distance δ0, associated
to the norm ‖ · ‖ on V . If x and y are in P(V ),

δ0(x, y) := inf{‖u− v‖ | u ∈ x, v ∈ y, ‖u‖ = ‖v‖ = 1}.

If g is an element of PGL(V ), g is proximal if g has a unique eigenvalue of largest
modulus. This eigenvalue is real, and we denote by x+ the associated eigen-line, and by V <

g

the supplementary hyperplane fixed by g.
The action of g on P(V ) then has a single attracting point x+

g , and the basin of attraction
is the complement of the hyperplane X<

g = P(V <
g ).

Conversely, an element g that has an attracting fixed point in P(V ) is proximal.

Definition 16. Let g be a proximal element and r ≥ ε > 0. We define

bε,δ0

g = B(x+
g , ε) = {x ∈ P(V ) | δ0(x, x

+
g ) ≤ ε},

and
Bε,δ0

g = {x ∈ P(V ) | δ0(x,X
<
g ) ≥ ε}.

We say g is (r, ε)-proximal if:

• δ0(x
+
g ,X

<
g ) ≥ 2r;

• g(Bε,δ0
g ) ⊂ bε,δ0

g ;

• the restriction of g to Bε,δ0

g is ε-Lipschitz.

12



7.2 Loxodromic elements

An element g ∈ PGL(V ) is called loxodromic (or R-regular) if the eigenvalues of g, counted
with multiplicity, have pairwise distinct norms. We denote them by λ1, . . . λn+1 (they are
necessarily real) such that |λ1| > · · · > |λn+1|, and let v1, . . . , vn+1 be associated eigenvec-
tors.

For i = 1, . . . , n + 1, we denote by Vi the i-th exterior power of V, Vi =
∧i

V . Then
the action of g on P(Vi) is proximal with attracting fixed point x+

i = Rv1 ∧ · · · ∧ vi and the
basin of attraction is the compelement of P(V <

i ), where

V <
i = 〈vk1

∧ · · · ∧ vki
| k1 < · · · < ki and ki > i〉.

Conversely, and element g for which the action is proximal on each P(Vi) is loxodromic.
The Euclidean structure on V induces a Euclidean structure on each Vi, i = 1, . . . , n+1

by the formula:

〈v1 ∧ · · · ∧ vi, w1 ∧ · · · ∧ wi〉 =
∑

σ∈Si

ε(σ)〈v1, wσ(1)〉 · · · 〈vi, wσ(i)〉.

If (ei)i=1...n+1 is an orthonormal basis for V , then an orthonormal basis of Vi is given
by (ek1

∧ · · · ∧ eki
)1≤k1<···<ki≤n+1.

Definition 17. An element g in PGL(V ) is called (r, ε)-loxodromic if the action of g on
P(Vi) is (r, ε)-proximal for all i.

Below, the eigenvectors of g will be normalized, i.e. ‖v1‖ = · · · ‖vn+1‖ = 1.

7.3 Loxodromic elements and the distance on P(V )

For g loxodromic, we denote by v1, . . . , vn+1 the normalized eigenvectors of g, and by
λ1, . . . λn+1 the associated eigenvalues, ordered by decreasing modulus.

Let 〈·, ·〉g be a dot product for which v1, . . . , vn+1 is an orthonormal basis, and δg the
induced distance on P(V ),

δg(x, y) := inf{‖u− v‖ | u ∈ x, v ∈ y, ‖u‖g = ‖v‖g = 1}.

Since the projective space P(V ) is compact, the distance δg is clearly equivalent to δ0.
The point of this section is to show that, if g is (r, ε)-loxodromic, then the constants

involved in the equivalence of the distances can be chosen independently of g.
We know there exists an orthonormal basis (ei) of (V, 〈·, ·〉) and a lower-triangular matrix

T with a strictly positive diagonal such that

t(v1, . . . , vn+1) = T t(e1, . . . en+1).

(This is the Schmidt orthonormalization process.) We denote by by T (g) the lower-
triangular matrix thus associated to g.

Proposition 18. Let r > 0. There exists a compact Kr in GLn+1(R) such that if g is
(r, ǫ)-loxodromic, then the matrix T (g) belongs to the compact set Kr.

Proof. Let S(V ) be a unit sphere in V with the norm ‖ ·‖. Let U be the domain in S(V )n+1

of linearly independent (n+ 1)-tuples.
We denote by Fr the collection of (n + 1)-tuples (w1, . . . wn+1) satisfying the following

inequalities:

13



δ0(Rw1,P(W<
1 )) ≥ 2r

δ0(Rw1 ∧ w2,P(W<
2 )) ≥ 2r

. . .

δ0(Rw1 ∧ wk,P(W<
k )) ≥ 2r

. . .

where W<
k = 〈wi1 ∧ · · · ∧wik

| i1 < · · · < ik〉, and δ0 is the distance on P(Vi) induced by the
Euclidean structure.

The set Fr is compact and in U . We denote by T the function

U → GLn+1(R)

(w1, . . . , wn+1) 7→ T (w1, . . . , wn+1)

where T (w1, . . . , wn+1) is the matrix given by the preceding Schmidt orthogonalization.
This transformation T is continuous, so the image of Fr is a compact set Kr.

Based on this proposition, we derive the corollary:

Corollary 19. Let r > 0. There exists a strictly positive constant Cr such that for g ∈
PGL(V ), if g is (r, ε)-loxodromic, then

for all x and y in P(V ),
1

Cr
δg(x, y) ≤ δ0(x, y) ≤ Crδg(x, y).

δg is the distance associated with the norm ‖ · ‖g introduced earlier.

8 Equality of Hölder regularities

We will now prove the theorem announced in the first part of this paper (Theorem 4). We
will in fact prove the stronger Theorem 22.

For the rest of this section, Ω designates a strictly convex divisible domain, and Γ the
corresponding discrete subgroup of PGL(V ).

8.1 Notation.

We introduce some notation related to the group Γ.
Let g ∈ PGL(V ), λ1, . . . , λn+1 the eigenvalues of g ordered by decreasing modulus. The

logarithms of the norms of these eigenvalues are denoted by l1 ≥ l2 ≥ . . . ≥ ln+1.
If g is biproximal, that is to say g and g−1 are proximal, we set

αg :=
l1 − ln+1

l1 − ln
, βg :=

l1 − ln+1

l1 − l2
.

Furthermore, we define

βΓ := sup
g∈Γ,g proximal

βg and αΓ := inf
g∈Γ,g−1 proximal

αg.

If g belongs to Γ\{id}, we know that g is proximal (Proposition 5.1 of [5]), and so is
g−1, so

1

αg−1

+
1

βg
= 1.

14



We then have
1

αΓ
+

1

βΓ
= 1. (e)

We also have α(tg) = αg and β(tg) = βg, and thus

αΓ = α(tΓ) and βΓ = β(tΓ). (f)

8.2 Proximality and regularity

The numbers αΓ and βΓ are connected by the regularity of the boundary by the following
inequalities:

Proposition 20. (Corollary 5.3 of [5]) Let Ω a strictly convex divisible domain divided by
group Γ. In the discussed notation, we have the inequalities

1 < αΩ ≤ αΓ ≤ 2 ≤ βΓ ≤ βΩ <∞.

We repeat the proof for the reader’s convenience.

Proof. Let g 6= id in Γ. We know that g is biproximal. We denote by x+
g and x−g the

eigen-lines associated to the eigenvalues of the largest and smallest modulus, respectively.
Let Wg be the g-invariant subspace supplementary to these lines.. The matrix of g in a
basis adapted to the decomposition x+

g ⊕Wg ⊕ x−g is of the form



λ1 0 0
0 Ag 0
0 0 λn+1


 .

The eigenvalues of g are λ1, . . . , λn+1, and we denote by l1 ≥ · · · ≥ ln+1 the logarithms
of their norms. Furthermore, by Proposition 5.1 of [5] we know that x+

g belongs to the
boundary ∂Ω and that the tangent hyperplane Tx+

g
∂Ω is V >

g = x+
g ⊕Wg.

In the affine patch defined by V <
g = Wg ⊕ v−g , we can place the point x+

g at the origin.
The tangent hyperplane is then the subspace Wg. g acts on this coordinate patch by the
matrix:

[
λ−1

1 Ag 0
0 λ−1

1 λn+1

]

There exist elements p in the boundary ∂Ω such that:

lim
q→∞

1

q
log δ0(g

q · p, x+
g ) = ln − l1 and lim

q→∞

1

q
log δ0(g

q · p, V >
g ) = ln+1 − l1

Hölder regularity then shows that αg ≥ αΩ and thus αΓ ≥ αΩ. The other inequality is
shown in a similar manner.

Geodesic flow and the eigenvalues of the elements of Γ are related.

Proposition 21. Let Ω a strictly convex divisible domain and Γ a torsion-free group dividing
Ω. Let furthermore a′φ be the constant associated to the geodesic flow φt on the quotient
M = Γ\Ω, as in Corollary 13.

We then have the equation

a′φ =
1

βΓ
= 1 −

1

αΓ
.
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Proof. a′φ is the contraction constant associated to the periodic geodesics. Let a < 1/βΓ.

The closed geodesics of T 1M correspond to geodesics (ωs)s∈R of T 1Ω such that there
exists a non-trivial g ∈ Γ such that g · (ωs)s∈R = (ωs)s∈R.

We give the unit tangent bundle T 1Ω a Γ-invariant Riemannian metric ‖·‖T 1Ω. For such
a geodesic (ωs)s∈R, we must show that there exists an A such that, for all s, for all t > 0,

and for all v− in Ẽ−
ωs

:

‖(Dφt)ωs
v−‖T 1Ω ≤ Ae−at‖v−‖T 1Ω.

(The same proof works for Ẽ+.)
The logarithms of the norms of the eigenvalues of the element g, such that g ·(ωs) = (ωs),

are denoted by l1 ≥ · · · ≥ ln+1. We then have for all s, g · ωs = ωs+l1−ln+1
, which comes

from the formula for the Hilbert distance on Ω. By g-invariance, it suffices to prove the
equation above for s = 0 and t = q(l1 − ln+1) with q ∈ N

∗. That is to say, there exists A

such that for all q ∈ N
∗ and v− ∈ Ẽ−

ω0
, t = q(l1 − ln+1),

‖(Dφt)ω0
v−‖T 1Ω ≤ Ae−at‖v−‖T 1Ω.

Let H be a hyperplane such that P(H) does not intersect Ω, with the norm ‖ · ‖H . As
in Section 2, Ω is identified with a domain in H, the tangent bundle TΩ is identified with
Ω × H and, for ω in TΩ, Tω(TΩ) with H × H. We also use the notation of that section
(p+, P−, σ+, σ−).

For ω = ω0 = (x, ξ), we have p+(ω) = x+
g the eigen-line of g associated to the eigenvalue

λ1, and p−(ω) = x−g . The supplementary g-invariant subspace to these lines x+
g and x−g is

denoted Wg. The hyperplane tangent to ∂Ω at x+
g is x+

g ⊕Wg, and that at x−g is x−g ⊕Wg.

Now let v− = (y,−σ+(ω)y) in Ẽ−
ω , where y belongs to TxHω (cf. Figure 3 where Iω =

Wg, p
+(ω) = x+

g and p−(ω) = x−g ). Here Hω is the hyperplane containing x and Wg. We
then have Dφt(v−) = (yt,−σ

+(ωt)yt), and yt is an element of Txt
Hωt

such that x+y, xt +yt

and x+
g are collinear (cf. Section 4.2). The hyperplane Hωt

contains xt and Wg.
According to Lemma 3.5 of [5], there exists a constant C > 0 such that

C−1‖yt‖Ω ≤ ‖Dφt(v−)‖T 1Ω ≤ C‖yt‖Ω

(‖ · ‖Ω is the metric on Ω defined by the Hilbert distance).
We need to find a constant A such that, for all y and all t = q(l1 − ln+1), we have

‖yt‖Ω ≤ Ae−at‖y‖Ω. By the definition of ‖ · ‖Ω, it suffices to obtain this inequality in terms
of σ+ and σ−.

We have

σ+(yt) =
‖yt‖H

dH(p+(yt), xt)
.

σ+(y) =
‖y‖H

dH(p+(y), x)
.

Then,

σ+(yt)

σ+(y)
≤

‖yt‖H

‖y‖H

maxp∈Hω∩∂Ω dH(p, x)

minp∈Hωt
∩∂Ω dH(p, xt)

For the construction of yt, we remark that, for all positive t, ‖yt‖H/‖y‖H ≤ ke−t, for a
certain constant k. Furthermore, for t = q(l1 − ln+1), we remark that gq sends Hω ∩ ∂Ω to
Hωt

∩ ∂Ω and we easily obtain the following inequality, for all q > 0 and t = q(l1 − ln+1).
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min
p∈Hωt

∩∂Ω
dH(p, xt) ≥ Keq(l1−ln+1) min

p∈Hω∩∂Ω
dH(p, x)

for a constant K (for example, using the affine chart in the previous proof).
This shows the existence of a constant A such that

σ+(yt)

σ+(y)
≤ Ae−t(1−1/αg),

and since a < 1 − 1/αg, this will give the concluding inequality. We obtain that a′φ ≥
1/βΓ.

Conversely, there exist vectors y such that, for all t = q(l1 − ln+1), we have

dH(p+(yt), xt) ≥ Keq(l1−ln),

‖yt‖H ≥ ke−t‖y‖H .

and the same calculation shows that a′φ ≤ 1 − 1/αg and we obtain the equality a′φ =
1 − 1/αΓ.

8.3 Conclusion

The rest shows that the inequalities in Proposition 20 are in fact equalities, which will easily
imply the desired result (Theorem 4) by equations (f).

Theorem 22. Let Ω be a strictly convex divisible domain divided by group Γ. We further-
more denote by αΩ and βΩ the regularities of Ω. αΓ and βΓ are the constants associated
with the group Γ in Section 7.1. aφ and a′φ are the constants related to the geodesic flow,
defined in Section 4.4.

Then:

1. the boundary ∂Ω is αΓ-Hölder; in particular αΩ = αΓ;

2. the boundary ∂Ω is βΓ-convex; and thus βΩ = βΓ;

3. the contraction constants for the flow are equal: aφ = a′φ = 1/βΩ;

4. the regularities of Ω and its dual are equal: αΩ = αΩ∗ , βΩ = βΩ∗ .

Lemma 8 and the inequalities (f) establish the equivalence of the points (1) and (2) of
the theorem. Points (3) and (4) can be deduced from the previous two, by Propositions 12
and 21 and by the inequality (f).

Thus, we have to prove only the following proposition.

Proposition 23. Let Ω a strictly convex domain divided by Γ. Let β ≥ βΓ. Then ∂Ω is
β-convex.

Proof. Suppose that the domain Ω is not an ellipsoid. We use the following fact:

there exists r ≥ ε > 0 and a compact K in Ω, for which:
for all x in Ω, there exists y in K and g in Γ such that

g is (r, ε)-loxodromic and x = g · y,
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whose proof is delayed (Proposition 26).
Let β > βΓ. By Proposition 15, it suffices to show that ψδ0

(β) is strictly positive, that
is to say, that the function φδ0

β , introduced in Section 5, is bounded below on the domain Ω.
This function is continuous and thus bounded below on the compact K by a strictly

positive number c. Let Cr be the equivalence constant for the distances, given by Corollary
19, and D = C1+β

r . Then, by Lemma 14, for all (r, ε)-loxodromic g and all x0 in Ω,

1

D
φ

δg

β (x0) ≤ φδ0

β ≤ Dφ
δg

β (x0).

and the function φ
δg

β is bounded below on K by c/D (δg is the distance associated to g,
introduced in Section 6).

Let g be (r, ε)-loxodromic, λ1, . . . , λn+1 its eigenvalues ordered by decreasing modulus,
v1, . . . , vn+1 the associated eigenvectors, and l1, . . . , ln+1 the logarithms of the norms of the
eigenvalues.

The line x+
g = Rv1 belongs to ∂Ω and is the attracting point of g in P(V ). Likewise,

x−g = Rvn+1 is in ∂Ω and the hyperplane tangent to ∂Ω at x−g is P(V <
g ), where V <

g =
〈v2, . . . , vn+1〉. The basin of attraction of g is the affine patch B+

g = P(V )\P(V <
g ):

φg : V <
g −→ B+

g

v 7−→ [v1 + v].

The action of g is the following on this affine patch:

g ∗ vi := φ−1
g ◦ g ◦ φg(vi) =

λi

λ1
vi for all i > 1.

The vector space V <
g has a Euclidean norm ‖·‖′g for which {v2, . . . , vn+1} is an orthonor-

mal basis. In the manner discussed, we immediately get

for all v in V <
g ,

∣∣∣∣
λn+1

λ1

∣∣∣∣ ‖v‖
′
g ≤ ‖g ∗ v‖′g ≤

∣∣∣∣
λ2

λ1

∣∣∣∣ ‖v‖
′
g,

eln+1−l1 ≤
‖g ∗ v‖′g
‖v‖′g

≤ el2−l1 . (g)

This norm induces a distance on the affine domain B+
g , which we denote by δ′g. It does

not induce a distance on Ω because the intersection P(V <
g )∩Ω = {x−g } is not empty, but it

none the less induces a distance on Ω. We can then calculate φ
δ′

g

b , but Lemma 14 does not
apply.

In the distance δ′g, the calculations are simplified, and for y0 ∈ Ω

φ
δ′

g

β (g · y0) = inf

{
δ′g(g · y0, y)

δ′g(g · y0, x)
β

∣∣∣∣ x, y ∈ ∂BΩ(g · y0, r0)

}

= inf

{
δ′g(g · y0, g · y)

δ′g(g · y0, g · x)
β

∣∣∣∣ x, y ∈ ∂BΩ(g · y0, r0)

}

= inf

{
‖g ∗ (φ−1

g (y0) − φ−1
g (y))‖′g

‖g ∗ (φ−1
g (y0) − φ−1

g (x))‖
′β
g

∣∣∣∣∣ x, y ∈ ∂BΩ(g · y0, r0)

}

because g is an isometry from the boundary ∂BΩ(y0, r0) to the boundary ∂BΩ(g ·y0, r0).
Then, using the inequalities (g),
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≥ eln+1−l1(el2−l1)−β inf

{
‖φ−1

g (y0) − φ−1
g (y)‖′g

‖φ−1
g (y0) − φ−1

g (x)‖
′β
g

|x, y ∈ ∂BΩ(g · y0, r0)

}

≥ e(β−βg)(l1−l2)φ
δ′

g

β (y0)

and since (β − βg)(l1 − l2) ≥ 0, we obtain the following inequality

φ
δ′

g

β (g · y0) ≥ φ
δ′

g

β (y0).

If y0 belongs toK, it remains to compare φ
δ′

g

β (y0) and φ
δg

β (y0) and the same with φ
δ′

g

β (g·y0)

and φ
δg

β (g · y0), if g is (r, ε)-loxodromic. This is what we do in the following lemma.

Lemma 24. There exists a constant E > 0 such that for all (r, ε)-loxodromic g and for all
y0 in K,

1

E
φ

δ′

g

β (y0) ≤ φ
δg

β (y0) ≤ Eφ
δ′

g

β (y0)

and
1

E
φ

δ′

g

β (g · y0) ≤ φ
δg

β (g · y0) ≤ Eφ
δ′

g

β (g · y0)

Proof. We define
K ′ = {x ∈ Ω | dΩ(x,K) ≤ r0}.

The intersection of K ′ with the boundary ∂Ω is empty, so there exists a number e such
that δ0(K

′, ∂Ω) ≥ e > 0. If g is (r, ε)-loxodromic, then for the constant Cr from Corollary
19

δg(K
′, ∂Ω) ≥

e

Cr
.

This means that, if y0 belongs to K, the ball BΩ(y0, r0) is far from P(V <
g ) (the distance

being greater than e/Cr), which implies the same property for BΩ(g · y0, r0) and thus the
equivalence of the distances. More precisely, we have the following lemma.

Lemma 25. Let η > 0. Let g a loxodromic element, and define

Bη,δg
g = {x ∈ P(V ) | δg(x,P(V <

g )) ≥ η}.

There exists a constant F > 0 not depending on g for which the distances δg and δ′g are

equivalent on the set B
η,δg
g :

for all x, y ∈ Bη,δg
g ,

1

F
δg(x, y) ≤ δ′g(x, y) ≤ Fδg(x, y).

Proof. We denote by (e1, . . . , en+1) the canonical basis for R
n+1 = W . The usual Euclidean

norm on W defines a distance δ on P(W ).
Define W< := Re2 ⊕ · · · ⊕ Ren+1. The restriction of the Euclidean norm to W< defines

a distance δ′ on the affine patch P(W )\P(W<).
Let g be a loxodromic element in PGL(V ), and v1, . . . , vn+1 the normalized eigenvectors

of g. The linear transformation from V to W that sends vi to ei induces a bijection of B
η,δg
g

with

Bη,δg := {x ∈ P(W ) | δ(x,P(W<)) ≥ η}.

This bijection is furthermore an isometry of (B
η,δg
g , δg) to (Bη,δ, δ), and also an isometry

from (B
η,δg
g , δ′g) to (Bη,δ, δ′). The constant F in the equivalence of the distances δ and δ′ is

the same.

19



The number η is from now on fixed to e/Cr. For all y0 in K and all (r, ε)-loxodromic g,

the ball BΩ(y0, r0) is a subset of B
η,δg
g .

The ball B
η,δg
g is the image in an affine chart φg of the ball of (V <

g , ‖ · ‖′g) centered at 0
and of radius

R =
2 − η2

√
4η2 − η4

.

Since the action of g on V <
g is a contraction, the image under g of the ball BΩ(y0, r0) is

a subset of B
η,δg
g .

Since on the balls BΩ(y0, r0) and BΩ(g · y0, r0) the distances δg and δ′g are equivalent up

to the constant F from the previous lemma, this implies that, for E = F 1+β ,

1

E
φ

δ′

g

β (y0) ≤ φ
δg

β (y0) ≤ Eφ
δ′

g

β (y0)

and
1

E
φ

δ′

g

β (g · y0) ≤ φ
δg

β (g · y0) ≤ Eφ
δ′

g

β (g · y0).

This concludes Lemma 24.

We can now conclude: for all x0 in Ω, there exists y0 in K and (r, ε)-loxodromic g in Γ
such that x0 = g · y0, so by equations (h) and (i),

φδ0

β (x0) ≥
1

D
φ

δg

β (x0) ≥
1

DE
φ

δ′

g

β (x0)

≥
1

DE
φ

δ′

g

β (y0) ≥
1

(DE)2
φδ0

β (y0)

≥
c

(DE)2

thus, ψδ0(β) is strictly positive and the boundary ∂Ω is β-convex, which finishes the proof
of Proposition 23.

To be complete, we need to prove the following fact used above.

Proposition 26. Let Ω be a strictly convex divisible domain divided a by group Γ. If the
domain Ω is not an ellipsoid, then there exist numbers r ≥ ε > 0 and a compact K ⊂ Ω
such that:

for all x0 in Ω, there exists y0 in K and g in Γ such that
g is (r, ε)-loxodromic and x0 = g · y0

Proof. According to Theorem 3.6 of [2], the group Γ is Zariski dense and thus contains a
loxodromic element [10]. It is a direct consequence of the theorem of Abels, Margulis and
Sŏıfer [1] that there exists a finite part F of Γ and r ≥ ε > 0 for which we have the property:

for all g in Γ, there exists h in F such that
gh−1 is (r, ε)-loxodromic.

Furthermore, by hypothesis there exists a compact K0 in Ω such that Ω = Γ ·K0. The
compact K = F ·K0 satisfies the conclusions of the proposition.
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A Appendix. Quasi-Isometries.

The ideas used here can be easily adapted to show that the injection of Γ into PSL(V ) is a
quasi-isometric embedding.

Definition A.1. Let (X, dX) and (Y, dY ) be metric spaces.
A transformation φ from X to Y is a quasi-isometric embedding if there exist (K,C)

such that, for all x, x′ in X,

1

K
dX(x, x′) − C ≤ dY (φ(x), φ(x′)) ≤ Kdx(x, x′) + C.

We also say (K,C)-quasi-isometric embedding.
Furthermore, φ is a quasi-isometry if, for all y in Y , there exists x inX with dY (y, φ(x)) ≤

C.

If Γ is a finitely generated group, it has a metric dΓ defined by the length of the words in a
generating set S. The quasi-isometry class of this metric does not depend on the generators
[7].

Let g in PSLn+1(R). We denote by µ+ = diag(µ1, . . . , µn+1), with µ1 ≥ · · · ≥ µn+1 its
Cartan component, i.e. g = k exp(µ+)l for k and l in PSO(n+ 1,R).

The following two lemmas will be useful.

Lemma A.2. Let dPSLn+1(R) be a left-invariant metric on PSLn+1(R) and ‖ · ‖ a norm on
the diagonal matrices with trace zero coming from the Riemannian metric.

There then exist (K,C) such that, for all g, and µ+ the Cartan component of g:

1

K
‖µ+‖ − C ≤ dPSLn+1(R)(g, id) ≤ K‖µ+‖ + C.

Proof. By the invariance and compactness of PSOn+1(R), it suffices to show the inequalities
for the subgroup of diagonal matrices. This comes from the equivalence of norms on a finite-
dimensional vector space.

Lemma A.3. For all r ≥ ε > 0, there exists a constant c such that, for all (r, ε)-proximal g
in PSLn+1(R), l1 the logarithm of the modulus of the biggest eigenvalue of g, µ1 the largest
eigenvalue of the Cartan component of g, we have:

cµ1 ≤ l1 ≤ µ1.

Proof. This is Lemma 1.3 of [3]

Proposition A.4. Let Ω ⊂ P
n(R) be a strictly convex divisible domain and Γ a subgroup

of PSLn+1(R) dividing Ω.
The injection of Γ into PSLn+1(R) is then a quasi-isometric embedding.

Proof. In fact, only the left inequality in Definition A1 is not immediate.
Since the group Γ acts properly on Ω with a compact quotient, the orbit transformation

(Γ, dΓ) −→ (Ω, dΩ)

g 7−→ g · x

is a quasi-isometry (x is some point in Ω). There then exists a constant K such that, for all
g in Γ,

dΩ(g · x, x) ≥
1

K
lΓ(g).
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(lΓ is the length of the words in Γ).
According the the theorem of Abels, Margulis and Sŏıfer, there exists r ≥ ε > 0 and a

finite part F of Γ such that for all g in Γ, there exists h in F such that gh−1 is (r, ε)-proximal.
Furthermore, it is easy to see that there exists R > 0 such that, for all g in Γ, if g−1 is

(r, ε)-proximal, x+
g and x−g are fixed attracting and repelling points of g in P

n(R), then there
exists y belonging to the intersection of Ω and the line (x+

g , x
−
g ) such that dΩ(y, x) ≤ R.

Letting l1 ≥ · · · ≥ ln+1 be the logarithms of the norms of the eigenvalues of g, we have

dΩ(g · y, y) = l1 − ln+1,

where

l1 − ln+1 ≥ dΩ(g · x, x) − 2R ≥
1

K
lΓ(g) − 2R.

Furthermore, Lemma A3 applies to g−1 and allows us to show that

‖µ+‖ := |µ1 − µn+1| ≥
1

c
(l1 − ln+1).

Let (K,C) be the constants from Lemma A2. For g ∈ Γ, there exists an h in F such
that g−1h is (r, ǫ)-proximal, so

KdPSLn+1(R)(h
−1g, id) + C ≥

1

c

(
1

K
lΓ(h−1g) − 2R

)
,

and we get:

lΓ(h−1g) ≥ lΓ(g) − max
h∈F

lΓ(h)

dPSLn+1(R)(g, id) ≥ dPSLn+1(R)(h
−1g, id) − max

h∈F
dPSLn+1(R)(h, id)

obtaining the desired conclusion.
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