
Image inpainting and a geometric model of the
visual cortex.

Anton Lukyanenko

UIUC Mathematics Department

November 30, 2011



Outline

1. Inpainting and disocclusion

2. Biological inspiration

3. Geometric approach

4. Conclusion



Outline

1. Inpainting and disocclusion

2. Biological inspiration

3. Geometric approach

4. Conclusion



Outline

1. Inpainting and disocclusion

2. Biological inspiration

3. Geometric approach

4. Conclusion



Outline

1. Inpainting and disocclusion

2. Biological inspiration

3. Geometric approach

4. Conclusion



Inpainting and disocclusion: examples



Inpainting and disocclusion: examples



Inpainting and disocclusion: examples



Inpainting and disocclusion: examples



Inpainting and disocclusion: curve completion

Curve completion should have:

1. Isotropy

2. Scale invariance

3. Smoothness

4. Extensibility

5. Roundness

6. Total minimum curvature

Problem
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Early visual processing:

1. Retina cells react to light
intensity.

2. Information sent to striate
cortex V1.

3. Each V1 cell responds to a
region of retinal data.

4. Cell responses are modeled
by Gabor filters.
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Biological inspiration: natural images

Olshausen, Field 1996:
Gabor filters are good for encoding real-world images. A learning
algorithm decided the following 400 filters are the best.



Biological inspiration: V1 structure

1. V1 cells have:
I Receptive field
I Direction preference

2. Columns and hypercolumns

3. Long-range connections

4. Association field



Biological inspiration: V1 structure

1. V1 cells have:
I Receptive field
I Direction preference

2. Columns and hypercolumns

3. Long-range connections

4. Association field



Biological inspiration: V1 structure

1. V1 cells have:
I Receptive field
I Direction preference

2. Columns and hypercolumns

3. Long-range connections

4. Association field



Biological inspiration: V1 structure

1. V1 cells have:
I Receptive field
I Direction preference

2. Columns and hypercolumns

3. Long-range connections

4. Association field



Biological inspiration: V1 structure

1. V1 cells have:
I Receptive field
I Direction preference

2. Columns and hypercolumns

3. Long-range connections

4. Association field



Biological inspiration: V1 structure

1. V1 cells have:
I Receptive field
I Direction preference

2. Columns and hypercolumns

3. Long-range connections

4. Association field



Mathematical filling: modeling V1 structure

We will use the following model of V1:

1. Each cell has coordinates (x , y , θ).

2. (x , y) represent the center of the receptive field.

3. θ represents the orientation preference.

Neural connections are encoded in the geometry.

1. “Allowed” curves represent signal propagation.

2. An allowed curve starting at (x , y , θ) can move only:

I Along θ.
I Along (x , y) in the θ direction.
I A combination of these.

3. Note: this model also describes wheelbarrow motion.

4. Distance measured using only allowed curves.

5. Distance is the length of the shortest allowed curve.

6. (Chow’s Theorem) An allowed curve connects any two cells.
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Mathematical filling: modeling V1 activity

Processing of visual data is encoded by a “lifting”:

1. Retinal data is encoded as an intensity function I (x , y).

2. The direction of a contour at (x , y) is given by ∇I (x , y).

3. Cells near (x , y , θ (∇I (x , y))) get excited.

4. I (x , y) is replaced by a surface S .

Original data: Associated surface in V1:
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Mathematical filling: minimal surfaces in V1 geometry

Our model of V1 is not Euclidean, which causes many issues:

1. Information moves only along “allowed directions”.

2. Propagation in other directions is possible, but indirect.

3. Notion of surface area needs adjustment.

4. Finding minimal surfaces becomes even harder.

5. Are minimal surfaces “best” any more?

These problems have been resolved:

1. V1 is a Sub-Riemannian manifold.

2. Surface area, etc. of SR manifolds is now well-studied.

3. (Mumford ’92) Brownian motion in V1 leads to minimal
surfaces.

4. (Citti-Sarti ’06) Minimal surfaces useful for image completion.

5. (Hladky-Pauls ’08,’09) In certain cases, minimal surfaces are
extremely easy to find.
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Conclusion: examples

Citti-Sarti
example:

Hladky-Pauls examples:
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