Image inpainting and a geometric model of the visual cortex.

Anton Lukyanenko

UIUC Mathematics Department

November 30, 2011

Outline

1. Inpainting and disocclusion

- 2. Biological inspiration
- 3. Geometric approach
- 4. Conclusion

- 1. Inpainting and disocclusion
- 2. Biological inspiration
- 3. Geometric approach
- 4. Conclusion

- 1. Inpainting and disocclusion
- 2. Biological inspiration
- 3. Geometric approach
- 4. Conclusion

- 1. Inpainting and disocclusion
- 2. Biological inspiration
- 3. Geometric approach
- 4. Conclusion

Inpainting and disocclusion: curve completion

Curve completion should have:

1. Isotropy

- 2. Scale invariance
- 3. Smoothness
- 4. Extensibility
- 5. Roundness
- 6. Total minimum curvature

Problem

The curve completion axioms cannot all be satisfied simultaneously.

Inpainting and disocclusion: curve completion

Curve completion should have:

- 1. Isotropy
- 2. Scale invariance
- 3. Smoothness
- 4. Extensibility
- 5. Roundness
- 6. Total minimum curvature

Problem

The curve completion axioms cannot all be satisfied simultaneously.

Inpainting and disocclusion: curve completion

Curve completion should have:

- 1. Isotropy
- 2. Scale invariance
- 3. Smoothness
- 4. Extensibility
- 5. Roundness
- 6. Total minimum curvature

Problem

The curve completion axioms cannot all be satisfied simultaneously.

- 1. Averaging: Laplace equation
- 2. Prolongation of contour lines
- 3. Diffusion

- 1. Averaging: Laplace equation
- 2. Prolongation of contour lines
- 3. Diffusion

- 1. Averaging: Laplace equation
- 2. Prolongation of contour lines
- 3. Diffusion

- 1. Averaging: Laplace equation
- 2. Prolongation of contour lines
- 3. Diffusion

- 1. Averaging: Laplace equation
- 2. Prolongation of contour lines
- 3. Diffusion

Key methods for inpainting:

- 1. Averaging: Laplace equation
- 2. Prolongation of contour lines
- 3. Diffusion

Question

What about disocclusion?

Key methods for inpainting:

- 1. Averaging: Laplace equation
- 2. Prolongation of contour lines
- 3. Diffusion

Question

What about disocclusion?

Question

Is this what the brain does?

Biological inspiration: V1

Early visual processing:

- 1. Retina cells react to light intensity.
- 2. Information sent to striate cortex V1.

Biological inspiration: V1

Early visual processing:

- 1. Retina cells react to light intensity.
- 2. Information sent to striate cortex V1.
- 3. Each V1 cell responds to a region of retinal data.
- 4. Cell responses are modeled by Gabor filters.

Biological inspiration: natural images

Olshausen, Field 1996:

Gabor filters are good for encoding real-world images. A learning algorithm decided the following 400 filters are the best.

1. V1 cells have:

- Receptive field
- Direction preference
- 2. Columns and hypercolumns
- 3. Long-range connections
- 4. Association field

1. V1 cells have:

- Receptive field
- Direction preference
- 2. Columns and hypercolumns
- 3. Long-range connections
- 4. Association field

- 1. V1 cells have:
 - Receptive field
 - Direction preference
- 2. Columns and hypercolumns
- 3. Long-range connections
- 4. Association field

- 1. V1 cells have:
 - Receptive field
 - Direction preference
- 2. Columns and hypercolumns
- 3. Long-range connections
- 4. Association field

- 1. V1 cells have:
 - Receptive field
 - Direction preference
- 2. Columns and hypercolumns
- 3. Long-range connections
- 4. Association field

- 1. V1 cells have:
 - Receptive field
 - Direction preference
- 2. Columns and hypercolumns
- 3. Long-range connections
- 4. Association field

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - > Along θ .
 - \succ Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - Along θ .
 - Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - Along θ .
 - Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - Along θ.
 - Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - Along θ .
 - Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - Along θ.
 - Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - Along θ .
 - Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - Along θ .
 - Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - Along θ .
 - Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

We will use the following model of V1:

- 1. Each cell has coordinates (x, y, θ) .
- 2. (x, y) represent the center of the receptive field.
- 3. θ represents the orientation preference.

- 1. "Allowed" curves represent signal propagation.
- 2. An allowed curve starting at (x, y, θ) can move *only*:
 - Along θ .
 - Along (x, y) in the θ direction.
 - A combination of these.
- 3. Note: this model also describes wheelbarrow motion.
- 4. Distance measured using only allowed curves.
- 5. Distance is the length of the shortest allowed curve.
- 6. (Chow's Theorem) An allowed curve connects any two cells.

- 1. Retinal data is encoded as an intensity function I(x, y).
- 2. The direction of a contour at (x, y) is given by $\nabla I(x, y)$.
- 3. Cells near $(x, y, \theta (\nabla I(x, y)))$ get excited.
- 4. I(x, y) is replaced by a surface S.

- 1. Retinal data is encoded as an intensity function I(x, y).
- 2. The direction of a contour at (x, y) is given by $\nabla I(x, y)$.
- 3. Cells near $(x, y, \theta (\nabla I(x, y)))$ get excited.
- 4. I(x, y) is replaced by a surface S.

- 1. Retinal data is encoded as an intensity function I(x, y).
- 2. The direction of a contour at (x, y) is given by $\nabla I(x, y)$.
- 3. Cells near $(x, y, \theta (\nabla I(x, y)))$ get excited.
- 4. I(x, y) is replaced by a surface S.

- 1. Retinal data is encoded as an intensity function I(x, y).
- 2. The direction of a contour at (x, y) is given by $\nabla I(x, y)$.
- 3. Cells near $(x, y, \theta (\nabla I(x, y)))$ get excited.
- 4. I(x, y) is replaced by a surface S.

- 1. Retinal data is encoded as an intensity function I(x, y).
- 2. The direction of a contour at (x, y) is given by $\nabla I(x, y)$.
- 3. Cells near $(x, y, \theta (\nabla I(x, y)))$ get excited.
- 4. I(x, y) is replaced by a surface S.

- 1. Retinal data is encoded as an intensity function I(x, y).
- 2. The direction of a contour at (x, y) is given by $\nabla I(x, y)$.
- 3. Cells near $(x, y, \theta (\nabla I(x, y)))$ get excited.
- 4. I(x, y) is replaced by a surface S.

Even in Euclidean space, filling surfaces is hard.

Even in Euclidean space, filling surfaces is hard.

Even in Euclidean space, filling surfaces is hard.

One potential filling:

Least surface area, officially the best:

Even in Euclidean space, filling surfaces is hard.

Least surface area, officially the best:

Small surface area, but problems appearing:

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

- 1. V1 is a Sub-Riemannian manifold.
- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

- 1. V1 is a Sub-Riemannian manifold.
- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

- 1. V1 is a Sub-Riemannian manifold.
- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

- 1. V1 is a Sub-Riemannian manifold.
- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

These problems have been resolved:

1. V1 is a Sub-Riemannian manifold.

- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

These problems have been resolved:

1. V1 is a Sub-Riemannian manifold.

- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

- 1. V1 is a Sub-Riemannian manifold.
- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

- 1. V1 is a Sub-Riemannian manifold.
- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

- 1. V1 is a Sub-Riemannian manifold.
- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

- 1. V1 is a Sub-Riemannian manifold.
- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Our model of V1 is not Euclidean, which causes many issues:

- 1. Information moves only along "allowed directions".
- 2. Propagation in other directions is possible, but indirect.
- 3. Notion of surface area needs adjustment.
- 4. Finding minimal surfaces becomes even harder.
- 5. Are minimal surfaces "best" any more?

- 1. V1 is a Sub-Riemannian manifold.
- 2. Surface area, etc. of SR manifolds is now well-studied.
- 3. (Mumford '92) Brownian motion in V1 leads to minimal surfaces.
- 4. (Citti-Sarti '06) Minimal surfaces useful for image completion.
- 5. (Hladky-Pauls '08,'09) In certain cases, minimal surfaces are extremely easy to find.

Conclusion: examples

Hladky-Pauls examples: Occlusion Completion Image Occlusion Image Image Occlusion Occlusion Image

Image

Occlusion

Completion

Completion

Completion

Completion

Question How useful and accurate is this model of V1?

Question

How useful are the inpainting and disocclusion methods?

Question

How can the method be generalized to include extra dimensions (e.g. video correction) or color?

Question

How useful and accurate is this model of V1?

Question

How useful are the inpainting and disocclusion methods?

Question

How can the method be generalized to include extra dimensions (e.g. video correction) or color?

Question

How useful and accurate is this model of V1?

Question

How useful are the inpainting and disocclusion methods?

Question

How can the method be generalized to include extra dimensions (e.g. video correction) or color?