
LAB 7

MyPowerMod

The goal of this lab is to write our own PowerMod function. We have
already written functions for taking quotients and remainders, so feel free
to use Mathematica’s Quotient and Mod commands.

Problem 7.1. Write a PositivePowerMod[a_,b_,m_] command that
assumes that b is positive and computes rem (ab,m). Remember to use
recursion.

Problem 7.2. Use the extended Euclidean algorithm to find the inverse
of 53 mod 137. Write it out very carefully so you can tell Mathematica how
to do it below. What numbers do you need to keep track of as you work
through the algorithm?

19



20 7. MYPOWERMOD

Problem 7.3. Notice that to reconstruct the s and t values, you only
need to know the quotients produced by the Euclidean algorithm.

Look at the example you worked out above, and write down the details
of how s and t change.

Problem 7.4. Write a recursive GCDQuotients[a_,b_] command that
computes the GCD of a and b and produces a list of quotients. The command
GCDQuotients[a_,b_] should not return the GCD itself. Hint: use the
Append command to add extra entries to a list.



7. MYPOWERMOD 21

Problem 7.5. Once we create the quotients, we want to reconstruct
the s and t values. For this, we will give the list of quotients to a function
ListToST, along with our starting values of s and t.

Write a ListToST[QuotientList_, currents_, currentt_] command
that takes a list of quotients produced by GCDQuotients and produces the s
and t for the Extended Euclidean Algorithm. It should also work inductively.

Problem 7.6. Write a ModularInversion[a_, m_] command that com-
bines GCDQuotients and ListToST to find an inverse to a mod m.



22 7. MYPOWERMOD

Problem 7.7. Write a MyPowerMod[a_,b_,m_] function that computes
rem (ab,m) for any integer a by combining ModularInversion and PositivePowerMod.

Problem 7.8. How does MyPowerMod compare in speed and functional-
ity to PowerMod?


