
Introduction to Cryptology

by

Math 175
University of Michigan

Fall 2016





CHAPTER 1

Codes

Problem 1.1. YMWTZLMTZY YMNX BTWPXMJJY DTZ BNQQ
GJ YMJ “GQZJ” LWTZU.

Problem 1.2. IK AHYXSDHO IDH FHZI YKAH CKQ MXEE FHHA
IK NFKMMDPI NHCMKOAMPWQWHA. PWN IDH OHA VOKQS. XG
PFCKFH PWNW CKQ GKO P NHCMKOA, IHEE IDHL “LXYDXVPF”.

Problem 1.3. SCFGH PWH LWJPWIVV NFHS EJ HVKBHA HSDW
DMFWWUP DJ PWH HERY’O OEWJ XDS VZCNWEH?
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CHAPTER 1

Codes

Problem 1.1. KYIFLXYFLK KYZJ NFIBJYVVK PFL NZCC SV
KYV “XIVVE” XIFLG.

Problem 1.2. LY JNSXQENI LEN HNOL SYJN ZYC GXTT HNNJ
LY RHYG GEML RNZGYIJ GMK CKNJ. MKR LEN ZNTTYG BIYCQ.
XV MHZYHN MKRK ZYC VYI M RNZGYIJ, LNTT LENF “FMLENFM-
LXSK”.

Problem 1.3. YFSAWMUL HPCCDVCC TPRV TDKCEFBTMVOJ
MTZQCXC XY MUL DXKL’V BLDP HNV KTFUQIB?

1





CHAPTER 1

Codes

Problem 1.1. HVFCIUVCIH HVWG KCFYGVSSH MCI KWZZ PS
HVS “FSR” UFCID.

Problem 1.2. NK HYJPCGYD NGY IYLN JKHY UKM ZPOO IYYH
NK SIKZ ZGEN SYUZKDH ZEQ MQYH. EQS NGY FOMY BDKMC. PT
EIUKIY EQSQ UKM TKD E SYUZKDH, NYOO NGYR “ZKOAYDPIY”.

Problem 1.3. IWWSL EOH TIXL JKEA MJNL BU DROWFL BNIF
YMUZIME VR GQB LODA’F SPVE ZHR WMADWXD?

1





CHAPTER 1

Codes

Problem 1.1. CQAXDPQXDC CQRB FXATBQNNC HXD FRUU
KN CQN “HNUUXF” PAXDY.

Problem 1.2. UA ORXKEZRD UZR JRBU XAOR TAL SKVV JRRO
UA FJAS SZGU FRTSADO SGI LIRO. GIF UZR YDRRJ YDALE. KN GJ-
TAJR GIFI TAL NAD G FRTSADO, URVV UZRP “XDTEUAYDGEZT”.

Problem 1.3. IONSH KON PCNQ BXLRMBEMVG PEVVHQ TAQU
EQSLHKQ IY GQM PIWU’X WNHE VZQ KXFAARW?

1





CHAPTER 1

Codes

Problem 1.1. XLVSYKLSYX XLMW ASVOWLIIX CSY AMPP FI
XLI “TYVTPI” KVSYT.

Problem 1.2. DU XTHYMITB DIT ATWD HUXT SUR LYJJ ATTX
DU FAUL LIPD LUBX LPE RETX. PEF DIT UBPAKT KBURM. YN
PASUAT PEFE SUR NUB P FTSLUBX, DTJJ DITQ “GRJYRE”.

Problem 1.3. YOYDD PQU LSVV DEIF ASNE XG DVEOHW TYKS
QWSJCGI AF PQU HADE’V KRGW KJE OWYNQRH?

1





CHAPTER 1

Codes

Problem 1.1. BPZWCOPWCB BPQA EWZSAPMMB GWC EQTT
JM BPM ”WZIVOM” OZWCX.

Problem 1.2. OY LSNZBESR OES FSIO NYLS XYD GZQQ FSSL
OY AFYG GEUO GYRL GUT DTSL. UTA OES BDRBQS VRYDB. ZJ
UFXYFS UTAT XYD JYR U ASXGYRL, OSQQ OESP “NUSTUR”.

Problem 1.3. FIFTX QXO SIPWKYPVUTUY EWXWLIOMNZRM
XMMKJAP QZ QXO OQXF’C EYWQ LQY VMSOXLO?

1





CHAPTER 2

Numbers

Experiment 2.1. Convert to text:

1413041922141907170404

Experiment 2.2. Using the same approach as in Experiment 2.1, con-
vert the following to numbers:

michiganmath

Problem 2.3. How we can send messages made of letters by sending a
number? What would we need to do to include punctuation?

3



4 2. NUMBERS

Modern cryptography works by encoding numerical messages. Our goal
now is to very carefully develop a theory of whole numbers (integers), so
that we are 100% sure our encryption methods work as expected.

Experiment 2.4. Write down the first 5 whole numbers:

(1) In English.

(2) In your favorite language.

(3) So that each number is in its own language.

(4) In Roman numerals.

(5) In binary.

(6) In a way no other group will use.



2. NUMBERS 5

Problem 2.5. We think of all the things in Experiment 2.4 as “num-
bers”. What are some things that they have in common?

Problem 2.6. What assumptions should we make about integers for
the rest of the course? List as few assumptions as possible, but make sure
that they are enough to describe the integers.

Problem 2.7. Use your axioms to prove or disprove:

(a) There is no biggest number.

(b) 5 = 3



6 2. NUMBERS

Experiment 2.8. What does 3 + 2 mean? Use your fingers to explain,
and then write down the idea.

Problem 2.9 (Addition algorithm). Suppose you have two numbers x
and y. Provide a list of instructions that computes x+ y.



2. NUMBERS 7

Experiment 2.10. Use your algorithm to compute 1 + 3. How is it
different from 3 + 1?

Problem 2.11 (Negation algorithm). Provide an algorithm that com-
putes −x for any integer x.



8 2. NUMBERS

Supplementary Exercises

Experiment 2.12. What does 7 ∗ 3 mean?

Problem 2.13 (Multiplication algorithm). Suppose you have two num-
bers x and y. Provide a list of instructions that computes x ∗ y.

Experiment 2.14. Use your algorithms to compute 4∗1 and 1∗4. How
are the two different?



CHAPTER 3

Modular Addition

Definition 3.1. Let m and d be integers. We say “d divides m”, which
is abbreviated d | m, if there exists some integer k such that m = dk. We
can also say that “d is a divisor of m” or that “m is a multiple of d”.

Experiment 3.2. List some values of x such that x | 6. Do the same
for values of x such that 6 | x. What numbers are on both lists?

Definition 3.3. Let a, b be arbitrary integers and let m be a positive
integer. We say that “a and b are congruent modulo m”, which is abbreviated
a ≡ b (mod m), when the difference a − b is a multiple of m, i.e., when
m | (a− b).

Experiment 3.4. List several values of x such that x ≡ 2 (mod 6). Do
the same for values of x such that x ≡ 3 (mod 5). Do your lists overlap?

9



10 3. MODULAR ADDITION

Problem 3.5. Write a formula, in terms of a variable integer k, for all
the numbers in the set

{x ∈ Z : x ≡ 3 (mod 7)}.

Problem 3.6. What does it actually mean to write a formula for the
set in Problem 3.5?



3. MODULAR ADDITION 11

Experiment 3.7. Compare the sets of integers

S = {x ∈ Z : x ≡ 3 (mod 7)}
and

T = {x ∈ Z : x ≡ 5 (mod 7)}.
Can you find a number that is both in the set S and in the set T? Can
you find a number in S which is 1 away from a number in T? How about
numbers that are 2 away? What can you say about the relationship between
S and T?



12 3. MODULAR ADDITION

Problem 3.8. Now let m be a positive integer and let b be any integer.
Similarly to Problem 3.5, write a formula for all the numbers in the set

{x ∈ Z : x ≡ b (mod m)}.

Problem 3.9. Let a, b, c be arbitrary integers and let m be a positive
integer. Explain why the following is true: if a ≡ b (mod m) then

a+ c ≡ b+ c (mod m).



3. MODULAR ADDITION 13

Theorem 3.10 (Modular Addition Theorem). Let m be a positive in-
teger. If a, b, c, d are integers such that

a ≡ b (mod m) and c ≡ d (mod m),

then
a+ c ≡ b+ d (mod m).

Proof.

�



14 3. MODULAR ADDITION

Supplementary Exercises

Exercise 3.1. Which of the following are true? Explain why or why
not.

(a) 6 | 6

(b) −1 | 6

(c) 7 | 1

(d) −1 ≡ 9 (mod 10)

(e) 0 | 4

(f) 4 | 0

(g) The number 2 is in the set

F = {x ∈ Z : x ≡ 0 (mod 4)}

(h) The number 4 is in the set

T = {x ∈ Z : x ≡ 0 (mod 2)}



CHAPTER 4

Shift Ciphers

Problem 4.1. The following table provides the encoding rule for the
Caesar cipher.

Plain Text A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cipher Text D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

If we replace the letters A,B,...,Z with the numbers 0,1,. . . ,25, then the
table provides a rule for converting numbers to other numbers. Rewrite the
table using numbers.

Problem 4.2. Using the table of Problem 4.1, find a function f(x) which
returns the encoded number corresponding to x when x ∈ {0, 1, 2, . . . , 25}.
Find a similar function g(y) to decode the encoded number y.

15



16 4. SHIFT CIPHERS

Problem 4.3. You discover a mysterious note which reads

RJJY TS YMJ INFL FY KNAJ.

Holding the note up to the light, you see a watermark:

Nuntius est occultus per aequatio y = x+ V modulo XXVI

What is the message?



4. SHIFT CIPHERS 17

Problem 4.4. Julius Caesar sent the following message to one of his
generals:

BKTO BOJO BOIO

For added security, Caesar encrypted the message twice with the Caesar
shift. How would you decode this message? Can you determine the first
and second shifts Caesar used?



18 4. SHIFT CIPHERS

Problem 4.5. The following message was encrypted using a shift cipher:

K MKOCKB CRSPD SC OKCI DY MBKMU,

OCZOMSKVVI GROX DROBO SC K YXO VODDOB GYBN, VSUO K.

GRKD MYEVN GO NY DY WKUO K WYBO COMEBO MYNO?

Find the encoding and decoding functions as in Problem 4.2 and decrypt
the message.



4. SHIFT CIPHERS 19

Supplementary Exercises

Exercise 4.1. The following table provides the encoding rule for the
Caesar cipher.

Plain Text A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cipher Text D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

(a) Use Caesar’s cipher to encode “But, for my own part, it was Greek to
me”.

(b) Decipher the following ciphertext created with Caesar’s cipher: “EHZDUH
WKH LGHV RI PDUFK!”

(c) Who wrote (a) and (b)? From where do the quotes come?

Exercise 4.2. Suppose that the ciphertext

WL LM, TJMLW! LZWF XSDD, USWKSJ.

was created by first using a shift cipher of some number of letters, then an-
other shift was applied to the encoded text (possibly by a different amount).
How will cracking this cipher compare to cracking the code if the sender only
used one shift? Decipher the message.

Exercise 4.3. Find the functions that encode and decode the messages
in Problems 4.1 and 4.2.





CHAPTER 5

Remainders

Problem 5.1. Let a be an integer and m be a positive integer. Explain
why there must be integers q and r such that a = mq + r. Is there more
than one such pair q, r? How would you find another pair that works?

Experiment 5.2. For each of the following, find the smallest nonnega-
tive integer r that satisfies the given congruence.

(a) r ≡ 14 (mod 3)

(b) r ≡ 130 (mod 26)

(c) r ≡ −1 (mod 5)

(d) r ≡ −258 (mod 16)

(e) r ≡ −6553891137 (mod 100)

What are your observations?

21



22 5. REMAINDERS

Theorem 5.3 (Division Algorithm). Let a be an integer and m be a
positive integer. Then there is a unique pair of integers q and r such that
0 ≤ r < m and a = mq + r.

Proof.

�



5. REMAINDERS 23

Definition 5.4. Let a be an integer and let m be a positive integer.
We call the numbers q and r that satisfy

a = mq + r and 0 ≤ r < m

the quotient and remainder of a divided by m, respectively. We will use

quo (a,m)

to represent the quotient q of a divided by m and

rem (a,m)

to represent the remainder r of a divided by m.

That is, quo (a,m) and rem (a,m) are the unique integers from the Divi-
sion Algorithm such that

a =quo (a,m)m+ rem (a,m).

Experiment 5.5. Find quo (a,m) and rem (a,m) for a and m as in
Experiment 5.2.



24 5. REMAINDERS

Experiment 5.6. Let m be a positive integer and let a, b be integers.
Which of the following statements are true? Are any sometimes true and
other times false? Formulate a conjecture for each with supporting examples.

(a) For all integers a, b, c, quo (ab, bc) =quo (a, c).

(b) If a =rem (b,m) then a ≡ b (mod m).

(c) If a ≡ b (mod m) then a =rem (b,m).



5. REMAINDERS 25

(d) If rem (a,m) =rem (b,m) then a ≡ b (mod m).

(e) If a ≡rem (b,m) (mod m) then rem (a,m) ≡ b (mod m).



26 5. REMAINDERS

Supplementary Exercises

Exercise 5.1. Evaluate the following.

(a) rem (22, 9) + 1

(b) rem (273, 10)− rem (10, 273)

(c) quo (quo (100, 13), 2)

(d) rem (rem (100, 13), 2)

(e) quo (26, 8)+ rem (26, 6)



5. REMAINDERS 27

Exercise 5.2. Let a, b, and m be integers such that a ≡ b (mod m).
Explain why this implies that

a ≡rem (b,m) (mod m),

b ≡rem (a,m) (mod m),

rem (a,m) =rem (b,m).

Exercise 5.3. When is quo (a,m) equal to the usual fraction a
m?





CHAPTER 6

Modular Multiplication

Experiment 6.1. Given that 13 ≡ 2 (mod 11) and 15 ≡ 4 (mod 11),
can you think of a way compute rem (195, 11) without doing any division?

Problem 6.2. Let m be a positive integer, and let a and c be integers.
Suppose a ≡ 3 (mod m) and c ≡ 2 (mod m). Is ac ≡ 6 (mod m)? Why?

29



30 6. MODULAR MULTIPLICATION

Theorem 6.3 (Modular Multiplication). Let m be a positive integer. If
a, b, c, d are integers such that

a ≡ b (mod m) and c ≡ d (mod m),

then
ac ≡ bd (mod m).

Proof.

�



6. MODULAR MULTIPLICATION 31

Problem 6.4. Let a, c, m, r, and s be integers such that rem (a,m) = r
and rem (c,m) = s. Is it always true that rem (ac,m) = rs? Why or why
not?

Experiment 6.5. Define the functions

f(x) =rem (3x, 12) and g(x) =rem (5x, 12).

Complete the following table and note any differences you see between the
values of f and g.

x 0 1 2 3 4 5 6 7 8 9 10 11

f(x)

g(x)

What might be the cause of the discrepancy?



32 6. MODULAR MULTIPLICATION

Problem 6.6. Let f(x) =rem (5x, 26) and complete a table for f(x) like
the one in the previous problem. Convert letters to numbers by replacing
A with 0, B with 1, C with 2, and so on. Then f(x) defines a cipher for
encoding plain text. Encode a short message with this cipher and trade
messages with a neighboring group.

Problem 6.7. How do we decode a message created with the cipher in
the previous problem? Write a formula for a function g(x) that will decode
messages encoded by f(x), i.e., a function such that g(f(x)) = x for any
number x. Make a table for g(x) and decrypt the message you received from
your neighbors.

Problem 6.8. Why is the function f(x) =rem (6x, 26) a bad function
for encoding messages? For which numbers a is f(x) =rem (ax, 26) good
for encoding messages?



6. MODULAR MULTIPLICATION 33

Supplementary Exercises

Exercise 6.1. Construct a multiplication table modulo 5, 6, 7, and 9.
To write the table modulo m, label the rows and columns of a square m×m
table with the numbers 0 to m− 1. The entry in the row a and column b is
rem (ab,m).)

What patterns do you see? Explain why some nonzero numbers multiply to
give zero in the tables for 6 and 9. Why doesn’t this happen in the tables
for 5 and 7?



34 6. MODULAR MULTIPLICATION

Exercise 6.2. For each of the following, find the smallest nonnegative
integer x that satisfies the given congruence, or show that there is no such
x.

(a) 3x ≡ 1 (mod 26)

(b) 4x ≡ 1 (mod 12)

(c) 5x ≡ 11 (mod 13)

(d) 2x ≡ −1 (mod 17)

(e) 79x ≡ 1 (mod 80)



CHAPTER 7

Multiplicative Inverses

Definition 7.1. Let m be a positive integer and let a be any integer.
The integer x is called a multiplicative inverse of a modulo m if ax ≡ 1
(mod m).

Experiment 7.2. For each of the following choices of a and m, decide
whether a has a multiplicative inverse modulo m. If it does, find at least
two.

(a) a = 0, m = 6

(b) a = 5, m = 9

(c) a = 9, m = 5

(d) a = 4, m = 15

(e) a = −4, m = 15

(f) a = 7, m = 21

(g) a = −2, m = 1

35



36 7. MULTIPLICATIVE INVERSES

Theorem 7.3 (Uniqueness of Inverses). Let a be any integer and m be
a positive integer. If x and y are both inverses of a modulo m, then x ≡ y
(mod m).

Proof.

�



7. MULTIPLICATIVE INVERSES 37

Definition 7.4. Two integers a and b are relatively prime if they have
no common divisors other than 1 and −1. In other words, a and b are
relatively prime when d | a and d | b implies that d = ±1.

Experiment 7.5. For each of the following choices of a and b, decide
whether a and b are relatively prime.

(a) a = 0, b = 6

(b) a = 5, b = 9

(c) a = 9, b = 5

(d) a = 4, b = 15

(e) a = −4, b = 15

(f) a = 7, b = 21

(g) a = −2, b = 1

How does this relate to your answers in Experiment 7.2?



38 7. MULTIPLICATIVE INVERSES

Problem 7.6. Let a,m > 0. Prove or disprove: there is a value of x
such that 0 < x < m and ax ≡ 0 (mod m).

Theorem 7.7. If a has an inverse modulo m then a is relatively prime
with m.

Proof.

�



7. MULTIPLICATIVE INVERSES 39

Supplementary Exercises

Exercise 7.1. For the following pairs of integers, find an inverse b of a
modulo m such that 0 < b < m.

(a) a = −1, m = 63

(b) a = 5, m = 24

(c) a = −5, m = 24

(d) a = 6, m = 37

(e) a = 9999, m = 10000



40 7. MULTIPLICATIVE INVERSES

Exercise 7.2. Let n be a positive integer. Explain why n− 1 is its own
inverse modulo n for every integer n ≥ 2. Why did we exclude n = 1?

Exercise 7.3. In Kid Krypto (see lab), we had an encoding function

enc(x) =rem (ex, n)

and decoding function
dec(x) =rem (fx, n).

For our decoding function to work, we want to know that

dec(enc(x)) = x

for every 0 ≤ x < n. Explain why this is true. That is, prove that Kid
Krypto always works. (Hint. Expand the above composition using the
definition of rem (a,m) and prove that e is an inverse of f modulo n.)



CHAPTER 8

Affine ciphers

Definition 8.1. An affine cipher is defined by the encoding formula

f(x) =rem (ax+ b, 26)

where a and b are integers. (We use the standard correspondence between
numbers and letters: A is 0, B is 1, C is 2, and so on.)

Problem 8.2. The message

ETTCRQ KCXZQDG EDQ QEGY,

URKQ YUM IRUS CRPQDGQG OUNMLU O.

was encoded using the affine cipher

f(x) =rem (3x+ 4, 26).

Decode the message and come up with a formula for the decoding cipher.
In other words, find c and d such that the decoding cipher is g(x) =rem
(cx+ d, 26).

Problem 8.3. Why is f(x) =rem (13x+1, 26) not a good affine cipher?

41



42 8. AFFINE CIPHERS

Problem 8.4. Come up with a necessary and sufficient condition for

f(x) =rem (ax+ b, 26)

to be a good affine cipher. If f is a good affine cipher, describe a way to
find the decoding function.

Problem 8.5. The Roman alphabet in Caesar’s time only had 23 letters.
Can you find a function f(x) =rem (ax+ b, 23), 1 ≤ a ≤ 22 that would be
a bad affine cipher? Why or why not?



8. AFFINE CIPHERS 43

Supplementary Exercises

Exercise 8.1. Look up how a rail fence transposition cipher works.
Decode the following message, which was created with a two-level rail fence
cipher:

IIAEE NUTEI IBSAD NOTEH UDROG ATFHV SEFRH RTSYT NIGNH SOLES FINS

Who said this?

Exercise 8.2. Look up keyword columnar transposition ciphers. Deci-
pher the following message that was created in this way.

FNNARBESTGHRIEERESSTSNSEVEAHIUNEIYDXASFTTAARDMLXHTSOICIENNUXIOASSEGWAOOS

(Hint. The keyword has six letters and is related to the previous problem.)

Exercise 8.3. For the following questions refer to the Vigenère cipher.

(a) Encode the following message using the Vigenère cipher with keyword
given by the (four letter) author of the quotation:

My purpose is to tell of bodies which have been transformed into

shapes of a different kind.

(b) Decode the following message created with the keyword HOUSE:

VJYJH PRSGY ZOSGZ LFHGX OWHYM ZCPWV BBNAP DSXWG PRYAX PGQSW PHINI

YKBWR AVYYI YAUFW ICGTI KDYSV SVUJF VFBWP SBIXZ

(c) A long message has been encoded using the Vigenère cipher with a key
of length m. An enemy has intercepted the cipher text and wants to
decode it.

The enemy guesses that it is encoded by the Vigenère method, and
guesses that the key has length �. Then he extracts from the cipher
text a subsequence consisting of every �-th letter. If his guess about the
length is right (i.e., � = m), then all the extracted letters were encoded
using the same letter of the key. If his guess is wrong (� �= m), then how
many letters of the key were used in coding the letters he extracted?
Your answer should be in terms of � and m.

In particular, under what circumstances (i.e., under what conditions
on � and m) would all the letters of the key be used in producing the
extracted subsequence of the cipher text? You may assume that the
text is long compared to � and m and even compared to �m. You may
also assume that the key doesn’t contain any repeated letters.





CHAPTER 9

The Euclidean algorithm

Definition 9.1. Let a and b be integers, and assume at least one is not
0. The greatest common divisor of a and b, denoted gcd(a, b), is the largest
integer d such that d | a and d | b. By convention, we define gcd(0, 0) = 0.

Experiment 9.2. For each of the following examples, find gcd(a, b).

(a) a = 75, b = 90

(b) a = 189, b = 343

(c) a = 54435, b = 285

(d) a = 37, b = 0

45



46 9. THE EUCLIDEAN ALGORITHM

Experiment 9.3. For each of the following, find r =rem (a, b), q =
quo (a, b) as well as gcd(a, b).

(a) a = 168, b = 84

(b) a = −252, b = 168

(c) a = 420, b = 252

(d) a = 1092, b = 420

(e) a = 1512, b = 1092
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Problem 9.4. Let a and b be two positive integers with a ≥ b, and write
a = qb+ r, where r =rem (a, b) and q =quo (a, b).

(a) Assume that r = 0. What can you say about gcd(a, b)?

(b) Now, assume that r �= 0. What can you say about the relationship
between gcd(a, b) and gcd(b, r)?



48 9. THE EUCLIDEAN ALGORITHM

Theorem 9.5. Let a and b be two positive integers with a ≥ b, and use
the division algorithm to write a = qb + r for r =rem (a, b) and q =quo
(a, b). Then . . .

Proof.

�



9. THE EUCLIDEAN ALGORITHM 49

Problem 9.6. Explain how Theorem 9.5 allows you to do Experiment 9.3
without computing all the divisors of every number.

Problem 9.7. Use your solutions to the last few problems to help you
find gcd(1850, 1221). The method you just used is called the Euclidean
Algorithm.



50 9. THE EUCLIDEAN ALGORITHM

Supplementary Exercises

Exercise 9.1. Use the Euclidean Algorithm to find the greatest common
divisor of the following pairs of integers.

(a) a = 14 and b = 21.

(b) a = 29 and b = 101.

(c) a = −169 and b = 91.

(d) a = 2604 and b = 2046.

(e) a = 1187 and b = 827.

(f) a = n and b = n− 1, where n is any positive integer.



CHAPTER 10

The extended Euclidean algorithm

Experiment 10.1. Consider the following equations:

360 = 1 · 294 + 66

294 = 4 · 66 + 30

66 = 2 · 30 + 6

What is gcd(360, 294)? How about gcd(294, 30) and gcd(30, 6)? We can
rearrange these equations as:

360− 1 · 294 = 66(1)

294− 4 · 66 = 30(2)

66− 2 · 30 = 6(3)

(a) Substitute the left side of equation (2) for the 30 in equation (3). We
see that some multiple of 66 plus some multiple of 294 equals 6. Call
this equation (4).

(b) Do a similar substitution of equation (1) into equation (4).
(c) Find two integers s, t such that 360s+ 294t = 6.

51



52 10. THE EXTENDED EUCLIDEAN ALGORITHM

Problem 10.2. The method you used in Experiment 10.1 is called the
extended Euclidean algorithm.

(a) Find integers s and t such that 57s+ 81t = gcd(57, 81).

(b) Find integers s and t such that 234s+ 24t = gcd(234, 24).

(c) Are there integers s and t such that 52s+ 18t = 1? Why or why not?
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Theorem 10.3 (Bézout’s Lemma). For any two integers a, b there exist
integers s and t such that

as+ bt = gcd(a, b).

Proof.

�



54 10. THE EXTENDED EUCLIDEAN ALGORITHM

Experiment 10.4. Use the extended Euclidean algorithm to do the
following.

(a) Compute an inverse of 63 modulo 95 and an inverse of 95 modulo 63.

(b) Find an inverse of 73 modulo 191 and an inverse of 191 modulo 73.
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Theorem 10.5 (Existence of Inverses). Let m be a positive integer. An
integer a has an inverse modulo m if and only if a is relatively prime to m.

Proof.

�
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Supplementary Exercises

Exercise 10.1. Use the Euclidean algorithm to find the greatest com-
mon divisor of the following pairs of integers and integers s and t such that
as+ bt = gcd(a, b).

(a) a = 2604, b = 2046

(b) a = 1187, b = 827

Exercise 10.2. Solve the following using your answer to Problem 10.1(b).

(a) Find the smallest nonnegative integer x such that

x ≡ 0 (mod 1187) and x ≡ 1 (mod 827).

(b) Find the smallest nonnegative integer x such that

x ≡ 1 (mod 1187) and x ≡ 0 (mod 827).

(c) Find the smallest nonnegative integer x such that

x ≡ 3 (mod 1187) and x ≡ 2 (mod 827).

Exercise 10.3. Find an inverse of 37 modulo 191, if such a thing exists.



CHAPTER 11

RSA encryption

Experiment 11.1. Compute 28 by hand in two ways:

(a) By multiplying 2 by itself 8 times.

(b) Using only 3 multiplications.

Experiment 11.2. (a) Compute rem (5842, 10) in your head.

(b) Compute rem (7313, 10) by hand.
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RSA stands for Ron Rivest, Adi Shamir, and Leonard Adleman, who
first published the algorithm in 1978. We will see that RSA is much more
difficult to break than Kid Krypto because factoring integers is surprisingly
difficult compared to computing inverses modulo m.

Definition 11.3 (RSA Key Generation). To generate a RSA public and
private keys choose two prime numbers p and q and calculate

n = pq

m = (p− 1)(q − 1).

Next, choose a positive integer e that is relatively prime to m and compute
an inverse d of e modulo m. At this point, securely discard the numbers p,
q, and m. The RSA public key consists of the numbers e and n. The RSA
private key consists of the numbers d and n.

Experiment 11.4. Generate RSA keys using the primes p = 7, q = 11.

(a) Compute n and m.

(b) Verify that e = 13 is relatively prime to m and compute an inverse d of
13 modulo m.



11. RSA ENCRYPTION 59

Definition 11.5 (RSA Encryption & Decryption). RSA messages are
represented using numbers in the range 0, 1, . . . , n− 1.

• To encrypt and send a message x using the public key e, n, compute
the number y =rem (xe, n) and send y.

• To decrypt a message y, encrypted as above, use the private key d
to compute rem (yd, n) to recover the original message x.

Experiment 11.6. Use the RSA keys you generated in Experiment 11.4.

(a) Encrypt the message x = 42 by computing y =rem (xe, n).

(b) Decrypt the message y by computing rem (yd, n).
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Problem 11.7. Nora publishes her RSA public key e = 5715 and n =
30967. You intercept the following RSA encrypted message from Nick to
Nora: 30384. Do you think it is possible to decode Nick’s original message?
How might you do it?

(a) Find the values of p and q that Nora used.

(b) Find Nora’s private key d.

(c) Recover Nick’s message.
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Supplementary Exercises

To crack the RSA, it’s enough to factor the number n into p and q, since
we can then compute the private key f . Doing this directly for large n is
extremely time-consuming using any known algorithm.

In this homework, we’d like to see that just discovering m allows us to
quickly find p and q. It’s also true that discovering f makes it possible to
quickly find p and q, so cracking the RSA is just as hard as factoring n.

Exercise 11.1. Nick wasn’t very careful when generating his RSA keys.
Digging through his computer’s trash bin, you found the number m =
5331 408 that he used. Knowing his public key e = 17 and n = 5336 063,
find the numbers p and q that Nick used to generate his RSA keys.

Exercise 11.2. Come up with a general way to find p and q given m
and n? (Hint : Find an expression of the form ap2 + bp+ c = 0, where a, b, c
depend only on m and n and use the quadratic formula.)

Exercise 11.3. Start this problem as soon as possible.

(a) Pick two large primes, at least 10 digits each. (Hint: about a tenth of
10-digit numbers are prime.)

(b) Use your primes to create an RSA public key and post it along with
your name on Piazza at the latest two days before this homework
is due.

(c) I will encode a message and post it publiclly as a response on Piazza.
What message did I send you?

(d) (Optional) Decode at least one message that I sent to another person.
The top 3 hackers get stickers.


