Math 675 Homework 8 Due 10/31/2018

1. Write (1, 2, 3) as a linear combination of the vectors (1, 1, 1), (3, 5, 6) and (7, 8, 9) using orthonormalization. Provide rounded numerical calculations, rather than exact ones. *Proof.* Let $u_1 = (1, 1, 1)$, $u_2 = (3, 5, 6)$ and $u_3 = (7, 8, 9)$. Then orthogonalizing gives

$$v_1 = 0.58u_1 = (0.58, 0.58, 0.58)$$

$$v'_{2} = u_{2} - (u_{2}, v_{1})v_{1}$$

= $u_{2} - 8.08v_{1} = (-1.67, 0.33, 1.33)$
 $v_{2} = v'_{2}/2.16 = (-0.77, 0.15, 0.62)$
 $v'_{3} = u_{3} - (u_{3}, v_{1})v_{1} - (u_{3}, v_{2})v_{2}$
= $u_{3} - 13.86v_{1} - 1.39v_{2} = (0.07, -0.21, 0.14)$
 $v_{3} = v'_{3}/0.27 = (0.27, -0.80, 0.53)$

We can then write

$$(1,2,3) = \langle (1,2,3), v_1 \rangle v_1 + \langle (1,2,3), v_2 \rangle v_2 + \langle (1,2,3), v_3 \rangle v_3 = 3.46v_1 + 1.39v_2 + 0.27v_3$$

Plugging in the formulas for v_1, v_2, v_3 in terms of u_1, u_2, u_3 we get:

$$(1,2,3) = 3.46(u_1/.58) + 1.39(2.16(u_2 - 8.08v_1)) + 0.27(0.27(u_3 - 13.86v_1 - 1.39v_2))$$

= 5.67u_1 + 1.39(2.16u_2 - 17.45v_1) + 0.7u_3 - 1.01v_1 - 0.10v_2

- 2. Let $\|\cdot\|$ be the norm in \mathbb{R}^2 for which the unit circle is a regular hexagon with side length 1. Prove that $\|\cdot\|$ is not induced by an inner product.
- 3. Let $f_i(x) = x^i$, $i \in \mathbb{N}_{\geq 0}$, be the basis of monomials in $C_2[a, b]$.
 - (a) Is it true that every continuous function on $C_2[a, b]$ is of the form $\sum_{i=0}^{\infty} a_i f_i$? (Hint: take a derivative.)
 - (b) Let g_i be the associated orthonormal basis. Is it true that every continuous function on $C_2[a, b]$ is of the form $\sum_{i=0}^{\infty} a_i g_i$?
 - (c) Why don't the two results contradict each other?