
LAB 7

PowerMod and RSA

We have already made a function that computes exponents, mod m,
extremely quickly. To implement RSA, we will also need multiplicative
inverses.

Problem 7.1. Write a recursive function MyGCD1 that computes gcd(a, b)
for any pair of integers a, b.

To implement the Extended Euclidean Algorithm, we will need to keep
track of the quotients and remainders involved in computing gcd(a, b): the
current a, b, q, and r.

Problem 7.2. Write a while loop that creates a table of all the numbers
for the GCD. It should look something like this (remember to copy-paste).
Note: you can visualize a table more easily by adding //TableForm.

EuclideanTable[a_,b_]:=Module[{ETable={},i=1},

AppendTo[ETable, (*starting row*)];

While[(*remainder in the last row is non-zero*),

(*add a new row to ETable*);

i++;

];

EETable

]

17



18 7. POWERMOD AND RSA

Problem 7.3. Make a function MyGCD2 that passes its parameters to
EuclideanTable, and then extracts the relevant cell from the table.

Hint: Tables are just lists of lists. To get the third element of a list T,
use the command T[[3]]. To get the last one, use T[[-1]].

Now let’s extend the above function:

Problem 7.4. Write a ExtendedEuclideanTable[a_,b_] that creates
the table we generate with the Extended Euclidean Algorithm.

It should look roughly like this:

ExtendedEuclideanTable[a_,b_]:=Module[{EETable={},i=1},

AppendTo[EETable, (*starting row, with blank s and t*)];

While[(*remainder in the last row is non-zero*),

(*add a new row to EETable*);

i++;

];

(*In the second half, we fill in s and t values:*)

(*Fill in the s and t values in the bottom row*)

While[(*we have not returned to the top*),

i--;

(*fill in the i-th row of s and t values*);

];

EETable

]



7. POWERMOD AND RSA 19

Problem 7.5. By accessing the correct cells inside the table produced by
ExtendedEuclideanTable, write functions MyGCD3[a_,b_], MyBezout[a_,b_]
and MyMultiplicativeInverse[a_,m_].

We have now built all the pieces of PowerMod: exponents and inverses.

Problem 7.6. What does PowerMod[a_,b_,m_] do? Try different val-
ues of a, b,m, including negative ones.



20 7. POWERMOD AND RSA

Problem 7.7. Make a MakeRSAKeys[] function that randomly chooses
{e, d, n}. It should look something like:

MakeRSAKeys[a_,b_]:=Module[{p,q,e,n,m,d},,

p=RandomPrime[10^9,10^10];

(*Generate q and e, and compute n, m, and d*)

{n,e,d}

]

Make sure you use MyPowerMod to compute d. Use MakeRSAKeys[] to
generate RSA public and private keys, and post your public key on the
whiteboard.

Problem 7.8. Use MyPowerMod to create the functions

RSAEncode[text_,e_,n_]:=MyPowerMod[

FromDigits[

ToCharacterCodes[text]-97,

26

],e,n];

RSADecode[y_,d_,n_]:=

FromCharacterCodes[

FromIntegerDigits[

MyPowerMod[y,d,n],

26

]+97;

]

Use these to send messages to other teams, or sign your announcements.
This time, we can’t (easily) crack your encryption, so make sure you’re
writing the correct numbers on the board.


