Continued Fractions on the Heisenberg Group

Anton Lukyanenko*  Joseph Vandehey

University of lllinois Urbana-Champaign

April 11, 2013

Anton Lukyanenko*, Joseph Vandehey Continued Fractions on the Heisenberg Group



Continued fractions

Every real number has a continued fraction expansion:

L1
X=a+ ———
ap + at--
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Every real number has a continued fraction expansion:
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The numbers CF(x) = {a; € N} are the CF digits of x.
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Continued fractions

Every real number has a continued fraction expansion:

L1
X=a+ ———
ap + at--

The numbers CF(x) = {a; € N} are the CF digits of x.
The convergents are the finite fractions

L1
ao —_—.
dl + ii

an

The Gauss map on the interval (0, 1) is given by
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Applications of continued fractions

Continued fractions appear in:
Diophantine approximation, ergodic theory, hyperbolic geometry.
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The digits CF(v4) encode the behavior of v in H2 /SL(2,Z), e.g.:
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Applications of continued fractions

Continued fractions appear in:
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The digits CF(v4) encode the behavior of v in H2 /SL(2,Z), e.g.:
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Applications of continued fractions

Continued fractions appear in:
Diophantine approximation, ergodic theory, hyperbolic geometry.

The digits CF(v4) encode the behavior of v in H2 /SL(2,Z), e.g.:
1. ~y escapes into the cusp when CF(vy4) or CF(vy-_) is finite,
2. ~y stays in the compact part when the digits are bounded.
Goal: replace ]HI]%g with H(zc, and R with the Heisenberg group H.
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Past CF variants
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Past CF variants

Regular continued fractions:
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Past CF variants

Regular continued fractions:

3 ) 5 (— 2 3

Nearest-integer continued fractions:

3 ) T ——— 2 3
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Past CF variants

Regular continued fractions:

3 ) By (— p) 3

Nearest-integer continued fractions:

3 ) CT ——— ) 3

Complex continued fractions:
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Heisenberg Group

The Heisenberg group H is C x R with group law

(z,t)* (Z,t) = (z+ 2/, t + t' + 2ImzZ’).
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Heisenberg Group

The Heisenberg group H is C x R with group law
(z,t)* (Z,t) = (z+ 2/, t + t' + 2ImzZ’).
The gauge metric is given by

Iz, O)|I* = |2|* + ¢ d(p,q) = |lp~" *ql|.
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Heisenberg Group

The Heisenberg group H is C x R with group law
(z,t) = (Z, ') = (z+ 2, t + t' + 2ImzZ).
The gauge metric is given by
Iz, Bl = J21* + 2 d(p.q) = o+ q|.

The integer Heisenberg group is the subgroup Z[i] x Z C H.
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Heisenberg Group

The Heisenberg group H is C x R with group law
(z,t) = (Z, ') = (z+ 2, t + t' + 2ImzZ).
The gauge metric is given by
Iz, Bl = J21* + 2 d(p.q) = o+ q|.

The integer Heisenberg group is the subgroup Z[i] x Z C H.
Fix a fundamental domain K for H(Z), e.g.:

Kc = (—.5,.5] x (—.5,.5] x (—.5,.5]

Kp ={pcH|d(p,0) <d(p,v) for all y € H(Z)}
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Heisenberg Group

The Heisenberg group H is C x R with group law
(z,t) = (Z, ') = (z+ 2, t + t' + 2ImzZ).
The gauge metric is given by
Iz, Bl = J21* + 2 d(p.q) = o+ q|.

The integer Heisenberg group is the subgroup Z[i] x Z C H.
Fix a fundamental domain K for H(Z), e.g.:

Kc = (—.5,.5] x (—.5,.5] x (—.5,.5]

Kp ={pcH|d(p,0) <d(p,v) for all y € H(Z)}
For x € H, define |x| € H(Z) by the property |x| > x € K.
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Koranyi inversion

The Koranyi inversion is given by

(2. 1) ( —z —t >
Uz, t) = , )
2|2 + it |z|* + 2
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Koranyi inversion

The Koranyi inversion is given by

(2. 1) ( —z —t >
wz,t) = , .
|z)? + it |z|* + 2

We have the standard equality

_ d(p,q)
oIl llqll

d(up,q)

Anton Lukyanenko*, Joseph Vandehey Continued Fractions on the Heisenberg Group



Koranyi inversion

The Koranyi inversion is given by

(2. 1) ( —z —t >
Uz, t) = , )
2|2 + it |z|* + 2

We have the standard equality

_ d(p,q)
el gl

d(up,q)

In particular, the unit sphere is preserved by ¢ (but not pointwise).
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Koranyi inversion

The Koranyi inversion is given by

(2. 1) < —z —t >
Uz, t) = , )
2|2 + it |z|* + 2

We have the standard equality
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In particular, the unit sphere is preserved by ¢ (but not pointwise).
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Continued fractions

For a point h € K, we have the Gauss map T(p) = LLpJ_l * L.
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Continued fractions

For a point h € K, we have the Gauss map T(p) = LLpJ_l * L.
For a point h € H, we have forward iterates and CF digits:

Yo = | h] ho =" *h
Yi+1 = [ehi] hi =754 * uhi
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Continued fractions

For a point h € K, we have the Gauss map T(p) = LLpJ_l * L.
For a point h € H, we have forward iterates and CF digits:

Yo = | h] ho =" *h
Yi+1 = [ehi] hi =754 * uhi

The convergents

1
K{v}Ho = (w — ) = ot .

The limit (if it exists):

Kiy) = lim {7},
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Theorems (L.-Vandehey)

Theorem (Finite expansions)
A point h € ‘H has a finite continued fraction expansion if and only

if h € H(Q).

Anton Lukyanenko*, Joseph Vandehey Continued Fractions on the Heisenberg Group



Theorems (L.-Vandehey)

Theorem (Finite expansions)

A point h € ‘H has a finite continued fraction expansion if and only
if h € H(Q).

Theorem (Convergence)

Let h € H with CF digits {~; € H(Z)}. Then the limit K{~;}
exists and equals h.
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Theorems (L.-Vandehey)

Theorem (Finite expansions)

A point h € ‘H has a finite continued fraction expansion if and only
if h € H(Q).

Theorem (Convergence)

Let h € H with CF digits {~; € H(Z)}. Then the limit K{~;}
exists and equals h.

Theorem (Pringsheim-style)

Let {~;}2, be a sequence of elements of H(Z) satisfying ||i|| > 3
for all i. Then the limit K{~;} exists.
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Geodesic coding

The proof relies on an embedding H < SU(2,1) = Isom(HZ)
satisfying H(Z) — SU(2, 1; Z[i]).
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Geodesic coding

The proof relies on an embedding H < SU(2,1) = Isom(HZ)
satisfying H(Z) — SU(2, 1; Z[i]).

According to Goldman—Parker and Falbel-Francics—Lax—Parker,
HZ with the SU(2, 1;Z[i]) action looks like:
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Geodesic coding

The proof relies on an embedding H < SU(2,1) = Isom(HZ)
satisfying H(Z) — SU(2, 1; Z[i]).
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Ergodicity

The Gauss map is given by T(h) = [¢ch]| ™! % h.
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Ergodicity

The Gauss map is given by T(h) = LLhJ_l * h.

Question
Is T ergodic with respect to a measure equivalent to L?
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Ergodicity

The Gauss map is given by T(h) = LLhJ_l * h.
Question
Is T ergodic with respect to a measure equivalent to L?

Even for complex continued fractions, this is complicated:
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Invariant measures

Numerical experiments suggest the following invariant measures for
the Gauss map with respect to the fundamental domains K¢ and

L

IS AR
AP ARLA
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