Continued Fractions on the Heisenberg Group

Anton Lukyanenko* Joseph Vandehey

University of Illinois Urbana-Champaign

April 11, 2013

向下 イヨト イヨト

Every real number has a continued fraction expansion:

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$$

回 と く ヨ と く ヨ と

æ

Every real number has a continued fraction expansion:

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

The numbers $CF(x) = \{a_i \in \mathbb{N}_+\}$ are the *CF digits* of *x*.

(4月) (4日) (4日)

Every real number has a continued fraction expansion:

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

The numbers $CF(x) = \{a_i \in \mathbb{N}_+\}$ are the *CF digits* of *x*. The *convergents* are the finite fractions

$$a_0+\frac{1}{a_1+\frac{1}{\cdots+\frac{1}{a_n}}}.$$

・日・ ・ヨ・ ・ヨ・

Every real number has a continued fraction expansion:

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

The numbers $CF(x) = \{a_i \in \mathbb{N}_+\}$ are the *CF digits* of *x*. The *convergents* are the finite fractions

$$a_0+rac{1}{a_1+rac{1}{\cdots+rac{1}{a_n}}}.$$

The Gauss map on the interval (0,1) is given by

$$T(x) = \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor.$$

Diophantine approximation, ergodic theory, hyperbolic geometry.

Image: A image: A

Continued fractions appear in:

Diophantine approximation, ergodic theory, hyperbolic geometry.

Continued fractions appear in:

Diophantine approximation, ergodic theory, hyperbolic geometry.

Continued fractions appear in:

Diophantine approximation, ergodic theory, hyperbolic geometry.

The digits $CF(\gamma_{\pm})$ encode the behavior of γ in $\mathbb{H}^2_{\mathbb{R}}/SL(2,\mathbb{Z})$, e.g.:

向下 イヨト イヨト

Continued fractions appear in:

Diophantine approximation, ergodic theory, hyperbolic geometry.

The digits $CF(\gamma_{\pm})$ encode the behavior of γ in $\mathbb{H}^2_{\mathbb{R}}/SL(2,\mathbb{Z})$, e.g.: 1. γ escapes into the cusp when $CF(\gamma_+)$ or $CF(\gamma_-)$ is finite,

Diophantine approximation, ergodic theory, hyperbolic geometry.

The digits $CF(\gamma_{\pm})$ encode the behavior of γ in $\mathbb{H}^2_{\mathbb{R}}/SL(2,\mathbb{Z})$, e.g.: 1. γ escapes into the cusp when $CF(\gamma_+)$ or $CF(\gamma_-)$ is finite, 2. γ stays in the compact part when the digits are bounded.

Diophantine approximation, ergodic theory, hyperbolic geometry.

The digits $CF(\gamma_{\pm})$ encode the behavior of γ in $\mathbb{H}^2_{\mathbb{R}}/SL(2,\mathbb{Z})$, e.g.: 1. γ escapes into the cusp when $CF(\gamma_+)$ or $CF(\gamma_-)$ is finite, 2. γ stays in the compact part when the digits are bounded.

Diophantine approximation, ergodic theory, hyperbolic geometry.

The digits $CF(\gamma_{\pm})$ encode the behavior of γ in $\mathbb{H}^2_{\mathbb{R}}/SL(2,\mathbb{Z})$, e.g.: 1. γ escapes into the cusp when $CF(\gamma_+)$ or $CF(\gamma_-)$ is finite, 2. γ stays in the compact part when the digits are bounded. Goal: replace $\mathbb{H}^2_{\mathbb{R}}$ with $\mathbb{H}^2_{\mathbb{C}}$, and \mathbb{R} with the Heisenberg group \mathcal{H} .

Anton Lukyanenko*, Joseph Vandehey Continued Fractions on the Heisenberg Group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Regular continued fractions:

- - 4 回 ト - 4 回 ト

æ

$$(z,t)*(z',t')=(z+z',t+t'+2\mathrm{Im}\overline{z}z').$$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

$$(z,t)*(z',t')=(z+z',t+t'+2\mathrm{Im}\overline{z}z').$$

The gauge metric is given by

$$||(z,t)||^4 = |z|^4 + t^2$$
 $d(p,q) = ||p^{-1} * q||$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

$$(z,t)*(z',t')=(z+z',t+t'+2\mathrm{Im}\overline{z}z').$$

The gauge metric is given by

$$\|(z,t)\|^4 = |z|^4 + t^2$$
 $d(p,q) = \|p^{-1} * q\|.$

The integer Heisenberg group is the subgroup $\mathbb{Z}[i] \times \mathbb{Z} \subset \mathcal{H}$.

$$(z,t)*(z',t')=(z+z',t+t'+2\mathrm{Im}\overline{z}z').$$

The gauge metric is given by

$$\|(z,t)\|^4 = |z|^4 + t^2$$
 $d(p,q) = \|p^{-1} * q\|.$

The *integer Heisenberg group* is the subgroup $\mathbb{Z}[i] \times \mathbb{Z} \subset \mathcal{H}$. Fix a fundamental domain K for $\mathcal{H}(\mathbb{Z})$, e.g.:

$$\begin{aligned} \mathcal{K}_{\mathcal{C}} &= (-.5,.5] \times (-.5,.5] \times (-.5,.5] \\ \mathcal{K}_{\mathcal{D}} &= \{ p \in \mathcal{H} \mid d(p,0) \leq d(p,\gamma) \text{ for all } \gamma \in \mathcal{H}(\mathbb{Z}) \} \end{aligned}$$

(1日) (日) (日)

$$(z,t)*(z',t')=(z+z',t+t'+2\mathrm{Im}\overline{z}z').$$

The gauge metric is given by

$$\|(z,t)\|^4 = |z|^4 + t^2$$
 $d(p,q) = \|p^{-1} * q\|.$

The *integer Heisenberg group* is the subgroup $\mathbb{Z}[i] \times \mathbb{Z} \subset \mathcal{H}$. Fix a fundamental domain K for $\mathcal{H}(\mathbb{Z})$, e.g.:

$$K_C = (-.5, .5] \times (-.5, .5] \times (-.5, .5]$$

 $\mathcal{K}_{\mathcal{D}} = \{ p \in \mathcal{H} \mid d(p, 0) \leq d(p, \gamma) \text{ for all } \gamma \in \mathcal{H}(\mathbb{Z}) \}$

For $x \in \mathcal{H}$, define $\lfloor x \rfloor \in \mathcal{H}(\mathbb{Z})$ by the property $\lfloor x \rfloor^{-1} * x \in K$.

The Koranyi inversion is given by

$$\iota(z,t) = \left(\frac{-z}{|z|^2 + it}, \frac{-t}{|z|^4 + t^2}\right).$$

- 4 回 2 - 4 □ 2 - 4 □

æ

The Koranyi inversion is given by

$$\iota(z,t) = \left(\frac{-z}{\left|z\right|^2 + it}, \frac{-t}{\left|z\right|^4 + t^2}\right).$$

We have the standard equality

$$d(\iota p, \iota q) = rac{d(p,q)}{\|p\| \|q\|}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

The Koranyi inversion is given by

$$\iota(z,t) = \left(\frac{-z}{|z|^2 + it}, \frac{-t}{|z|^4 + t^2}\right).$$

We have the standard equality

$$d(\iota p, \iota q) = rac{d(p,q)}{\|p\| \|q\|}.$$

In particular, the unit sphere is preserved by ι (but not pointwise).

• 3 > 1

The Koranyi inversion is given by

$$\iota(z,t) = \left(\frac{-z}{|z|^2 + it}, \frac{-t}{|z|^4 + t^2}\right).$$

We have the standard equality

$$d(\iota p, \iota q) = rac{d(p,q)}{\|p\| \|q\|}.$$

In particular, the unit sphere is preserved by ι (but not pointwise).

For a point $h \in K$, we have the Gauss map $T(p) = \lfloor \iota p \rfloor^{-1} * \iota p$.

▲圖▶ ▲屋▶ ▲屋▶

æ

For a point $h \in K$, we have the Gauss map $T(p) = \lfloor \iota p \rfloor^{-1} * \iota p$. For a point $h \in \mathcal{H}$, we have forward iterates and CF digits:

$$\gamma_0 = \lfloor h \rfloor \qquad \qquad h_0 = \gamma_0^{-1} * h$$
$$\gamma_{i+1} = \lfloor \iota h_i \rfloor \qquad \qquad h_i = \gamma_{i+1}^{-1} * \iota h_i$$

・ 同 ト ・ ヨ ト ・ ヨ ト

For a point $h \in K$, we have the Gauss map $T(p) = \lfloor \iota p \rfloor^{-1} * \iota p$. For a point $h \in \mathcal{H}$, we have forward iterates and CF digits:

$$\gamma_0 = \lfloor h \rfloor \qquad \qquad h_0 = \gamma_0^{-1} * h$$
$$\gamma_{i+1} = \lfloor \iota h_i \rfloor \qquad \qquad h_i = \gamma_{i+1}^{-1} * \iota h_i$$

The convergents

$$\mathbb{K}\{\gamma_i\}_{i=0}^n = \left(\gamma_0 + \frac{1}{\cdots + \frac{1}{\gamma_n}}\right) = \gamma_0 \iota \gamma_1 \iota \cdots \iota \gamma_n.$$

The limit (if it exists):

$$\mathbb{K}\{\gamma_i\} = \lim_{n \to \infty} \mathbb{K}\{\gamma_i\}_{i=0}^{\infty}.$$

向下 イヨト イヨト

Theorem (Finite expansions)

A point $h \in \mathcal{H}$ has a finite continued fraction expansion if and only if $h \in \mathcal{H}(\mathbb{Q})$.

向下 イヨト イヨト

Theorem (Finite expansions)

A point $h \in \mathcal{H}$ has a finite continued fraction expansion if and only if $h \in \mathcal{H}(\mathbb{Q})$.

Theorem (Convergence)

Let $h \in \mathcal{H}$ with CF digits $\{\gamma_i \in \mathcal{H}(\mathbb{Z})\}$. Then the limit $\mathbb{K}\{\gamma_i\}$ exists and equals h.

Theorem (Finite expansions)

A point $h \in \mathcal{H}$ has a finite continued fraction expansion if and only if $h \in \mathcal{H}(\mathbb{Q})$.

Theorem (Convergence)

Let $h \in \mathcal{H}$ with CF digits $\{\gamma_i \in \mathcal{H}(\mathbb{Z})\}$. Then the limit $\mathbb{K}\{\gamma_i\}$ exists and equals h.

Theorem (Pringsheim-style)

Let $\{\gamma_i\}_{i=0}^{\infty}$ be a sequence of elements of $\mathcal{H}(\mathbb{Z})$ satisfying $\|\gamma_i\| \geq 3$ for all *i*. Then the limit $\mathbb{K}\{\gamma_i\}$ exists.

The proof relies on an embedding $\mathcal{H} \hookrightarrow SU(2,1) = \text{lsom}(\mathbb{H}^2_{\mathbb{C}})$ satisfying $\mathcal{H}(\mathbb{Z}) \hookrightarrow SU(2,1;\mathbb{Z}[i])$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The proof relies on an embedding $\mathcal{H} \hookrightarrow SU(2,1) = \text{Isom}(\mathbb{H}^2_{\mathbb{C}})$ satisfying $\mathcal{H}(\mathbb{Z}) \hookrightarrow SU(2,1;\mathbb{Z}[i])$.

According to Goldman–Parker and Falbel–Francics–Lax–Parker, $\mathbb{H}^2_{\mathbb{C}}$ with the $SU(2,1;\mathbb{Z}[i])$ action looks like:

・ 同 ト ・ ヨ ト ・ ヨ ト

The proof relies on an embedding $\mathcal{H} \hookrightarrow SU(2,1) = \text{Isom}(\mathbb{H}^2_{\mathbb{C}})$ satisfying $\mathcal{H}(\mathbb{Z}) \hookrightarrow SU(2,1;\mathbb{Z}[i])$.

According to Goldman–Parker and Falbel–Francics–Lax–Parker, $\mathbb{H}^2_{\mathbb{C}}$ with the $SU(2,1;\mathbb{Z}[i])$ action looks like:

The digits $CF(\gamma_{\pm})$ encode the behavior of γ in $\mathbb{H}^2_{\mathbb{C}}/SU(2,1;\mathbb{Z}[i])$:

(4月) イヨト イヨト

The proof relies on an embedding $\mathcal{H} \hookrightarrow SU(2,1) = \text{Isom}(\mathbb{H}^2_{\mathbb{C}})$ satisfying $\mathcal{H}(\mathbb{Z}) \hookrightarrow SU(2,1;\mathbb{Z}[i])$.

According to Goldman–Parker and Falbel–Francics–Lax–Parker, $\mathbb{H}^2_{\mathbb{C}}$ with the $SU(2,1;\mathbb{Z}[i])$ action looks like:

The digits $CF(\gamma_{\pm})$ encode the behavior of γ in $\mathbb{H}^2_{\mathbb{C}}/SU(2,1;\mathbb{Z}[i])$: 1. γ escapes into the cusp when $CF(\gamma_+)$ or $CF(\gamma_-)$ is finite,

イロト イポト イヨト イヨト

The proof relies on an embedding $\mathcal{H} \hookrightarrow SU(2,1) = \text{Isom}(\mathbb{H}^2_{\mathbb{C}})$ satisfying $\mathcal{H}(\mathbb{Z}) \hookrightarrow SU(2,1;\mathbb{Z}[i])$.

According to Goldman–Parker and Falbel–Francics–Lax–Parker, $\mathbb{H}^2_{\mathbb{C}}$ with the $SU(2,1;\mathbb{Z}[i])$ action looks like:

The digits $CF(\gamma_{\pm})$ encode the behavior of γ in $\mathbb{H}^2_{\mathbb{C}}/SU(2,1;\mathbb{Z}[i])$:

- 1. γ escapes into the cusp when $\mathit{CF}(\gamma_+)$ or $\mathit{CF}(\gamma_-)$ is finite,
- 2. γ stays in the compact part when the digits are bounded.

(4月) イヨト イヨト

The Gauss map is given by $T(h) = \lfloor \iota h \rfloor^{-1} * \iota h$.

イロン イボン イヨン イヨン 三日

The Gauss map is given by $T(h) = \lfloor \iota h \rfloor^{-1} * \iota h$.

Question

Is T ergodic with respect to a measure equivalent to \mathcal{L} ?

The Gauss map is given by $T(h) = \lfloor \iota h \rfloor^{-1} * \iota h$.

Question

Is T ergodic with respect to a measure equivalent to \mathcal{L} ?

Even for complex continued fractions, this is complicated:

★ ∃ ▶ 3

3 ×

The Gauss map is given by $T(h) = \lfloor \iota h \rfloor^{-1} * \iota h$.

Question

Is T ergodic with respect to a measure equivalent to \mathcal{L} ?

Even for complex continued fractions, this is complicated:

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Numerical experiments suggest the following invariant measures for the Gauss map with respect to the fundamental domains K_C and K_D :

(E) < E)</p>