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Continued fractions

Every real number has a continued fraction expansion:

x = a0 +
1

a1 + 1
a2+···

The numbers CF (x) = {ai ∈ N+} are the CF digits of x .
The convergents are the finite fractions

a0 +
1

a1 + 1
···+ 1

an

.

The Gauss map on the interval (0, 1) is given by

T (x) =
1

x
−
⌊

1

x

⌋
.
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Applications of continued fractions

Continued fractions appear in:
Diophantine approximation, ergodic theory, hyperbolic geometry.

The digits CF (γ±) encode the behavior of γ in H2
R/SL(2,Z), e.g.:

1. γ escapes into the cusp when CF (γ+) or CF (γ−) is finite,

2. γ stays in the compact part when the digits are bounded.

Goal: replace H2
R with H2

C, and R with the Heisenberg group H.
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Past CF variants

Regular continued fractions:

Nearest-integer continued fractions:

Complex continued fractions:
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Heisenberg Group

The Heisenberg group H is C× R with group law

(z , t) ∗ (z ′, t ′) = (z + z ′, t + t ′ + 2Imzz ′).

The gauge metric is given by

‖(z , t)‖4 = |z |4 + t2 d(p, q) =
∥∥p−1 ∗ q

∥∥ .
The integer Heisenberg group is the subgroup Z[i]× Z ⊂ H.
Fix a fundamental domain K for H(Z), e.g.:

KC = (−.5, .5]× (−.5, .5]× (−.5, .5]

KD = {p ∈ H | d(p, 0) ≤ d(p, γ) for all γ ∈ H(Z)}

For x ∈ H, define bxc ∈ H(Z) by the property bxc−1 ∗ x ∈ K .
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Koranyi inversion

The Koranyi inversion is given by

ι(z , t) =

(
−z

|z |2 + it
,
−t

|z |4 + t2

)
.

We have the standard equality

d(ιp, ιq) =
d(p, q)

‖p‖ ‖q‖
.

In particular, the unit sphere is preserved by ι (but not pointwise).

Anton Lukyanenko*, Joseph Vandehey Continued Fractions on the Heisenberg Group



Koranyi inversion

The Koranyi inversion is given by

ι(z , t) =

(
−z

|z |2 + it
,
−t

|z |4 + t2

)
.

We have the standard equality

d(ιp, ιq) =
d(p, q)

‖p‖ ‖q‖
.

In particular, the unit sphere is preserved by ι (but not pointwise).

Anton Lukyanenko*, Joseph Vandehey Continued Fractions on the Heisenberg Group



Koranyi inversion

The Koranyi inversion is given by

ι(z , t) =

(
−z

|z |2 + it
,
−t

|z |4 + t2

)
.

We have the standard equality

d(ιp, ιq) =
d(p, q)

‖p‖ ‖q‖
.

In particular, the unit sphere is preserved by ι (but not pointwise).

Anton Lukyanenko*, Joseph Vandehey Continued Fractions on the Heisenberg Group



Koranyi inversion

The Koranyi inversion is given by

ι(z , t) =

(
−z

|z |2 + it
,
−t

|z |4 + t2

)
.

We have the standard equality

d(ιp, ιq) =
d(p, q)

‖p‖ ‖q‖
.

In particular, the unit sphere is preserved by ι (but not pointwise).

Anton Lukyanenko*, Joseph Vandehey Continued Fractions on the Heisenberg Group



Continued fractions

For a point h ∈ K , we have the Gauss map T (p) = bιpc−1 ∗ ιp.

For a point h ∈ H, we have forward iterates and CF digits:

γ0 = bhc h0 = γ−10 ∗ h

γi+1 = bιhic hi = γ−1i+1 ∗ ιhi

The convergents

K{γi}ni=0 =

(
γ0 +

1

· · ·+ 1
γn

)
= γ0ιγ1ι · · · ιγn.

The limit (if it exists):

K{γi} = lim
n→∞

K{γi}∞i=0.
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Theorems (L.-Vandehey)

Theorem (Finite expansions)

A point h ∈ H has a finite continued fraction expansion if and only
if h ∈ H(Q).

Theorem (Convergence)

Let h ∈ H with CF digits {γi ∈ H(Z)}. Then the limit K{γi}
exists and equals h.

Theorem (Pringsheim-style)

Let {γi}∞i=0 be a sequence of elements of H(Z) satisfying ‖γi‖ ≥ 3
for all i . Then the limit K{γi} exists.
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Geodesic coding

The proof relies on an embedding H ↪→ SU(2, 1) = Isom(H2
C)

satisfying H(Z) ↪→ SU(2, 1;Z[i ]).

According to Goldman–Parker and Falbel–Francics–Lax–Parker,
H2

C with the SU(2, 1;Z[i ]) action looks like:

The digits CF (γ±) encode the behavior of γ in H2
C/SU(2, 1;Z[i ]):

1. γ escapes into the cusp when CF (γ+) or CF (γ−) is finite,

2. γ stays in the compact part when the digits are bounded.
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Ergodicity

The Gauss map is given by T (h) = bιhc−1 ∗ ιh.

Question
Is T ergodic with respect to a measure equivalent to L?

Even for complex continued fractions, this is complicated:
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Invariant measures?

Numerical experiments suggest the following invariant measures for
the Gauss map with respect to the fundamental domains KC and
KD :
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