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Abstract

Previous lectures1 discuss the general theory of Dehn and filling functions. We
introduce nilpotent groups, discuss the connection between finitely generated and Lie
groups, and state some results on filling functions of nilpotent groups.

1 Nilpotent Groups

1.1 Finitely Presented Groups

Definition 1.1. Given a group Γ, its lower central series is defined by commutators: Γ1 = Γ
and Γi+1 = [Γ,Γi]. Γ is called nilpotent of class c if Γc 6= 1 but Γc+1 = 1.

Commutative groups are nilpotent of class 1. A class 2 nilpotent group is almost com-
mutative: the commutator subgroup commutes with the full group. The analogy with
commutative groups allows normalization arguments, as we demonstrate using growth rate.

Definition 1.2. Suppose Γ is generated by g1, . . . , gm ∈ Γ. The growth rate of Γ is

BΓ(N) = #{g ∈ G | l(g) ≤ N}, (1.1)

where l(g) is the length of the shortest word in g1, . . . , gm that represents g.

Definition 1.3. Given two functions f, g : Z→ Z, write f 4 g if for some a, b, c, d ∈ Z and
all N ∈ Z, f(N) ≤ g(aN + b) + cN + d. Denote the induced equivalence relation by '.

Let 4 and ' also denote the analogous relations on functions from R to R. We consider all
functions up to ' equivalence, without further mention.

It is clear that the definition of BΓ is independent of the choice of generators.

Example 1.4. Suppose Γ is commutative and generated by g1, . . . , gm ∈ Γ. Any g ∈ Γ
may be written as g = ga11 · · · gamm for some a1, . . . , am ∈ Z. The length of g is at most

∑
i ai

(the normalization is not necessarily unique). If we require l(g) ≤ N , then we have ai ≤ N ,
so a crude estimate gives BΓ(N) ≤ Nm. If the set of generators is minimal and torsion-free,
then Γ ∼= Zm, and BΓ(N) ' Nm.

1These notes were written for the 2011 Summer School on Filling Invariants and Asymptotic Geometry.
The notes for the other ten lectures are available at http://mypage.iu.edu/~fisherdm/school11.html.
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Example 1.5. Suppose Γ is generated by g1, . . . , gm ∈ Γ, and nilpotent of class 2. Because
commutators commute with all the generators, we may again reduce words to a normal
form. For example, we normalize g = g1g2g1g

−1
3 :

g = g1[g1, g2][g1, g2]−1g2g1g
−1
3 = g1(g1g2g

−1
1 g−1

2 )g2g1g
−1
3 [g1, g2]−1 = g2

1g2g
−1
3 [g1, g2]−1.

More generally, any word of length N can be put in normal form in at most N2 transpo-
sitions of adjacent letters. Suppose the commutator subgroup Γ1 is generated by elements
h1, . . . , hk. Then a word of length N has normalized form

g = ga11 · · · gamm hb11 · · ·h
bk
k , (1.2)

where
∑
i ai ≤ N . The normalization introduces at worst N2 commutators. The commu-

tators are then represented using h1, . . . , hk, introducing a multiplicative term independent
of N , so

∑
i bi 4 N2. Combining these estimates, we have BΓ(N) 4 Nm+2k.

Example 1.5 can be turned into an inductive proof that a nilpotent group has polynomial
growth. The term m+ 2k in the final estimate motivates the following definition:

Definition 1.6. Let Γ be a finitely generated nilpotent group. Then each quotient Γi/Γi+1

is a finitely generated abelian group, so isomorphic to a direct sum of Zdi with a torsion
group, for some di ∈ N. Define the homogeneous dimension of Γ as Q =

∑
i idi.

A famous theorem links the growth rate to homogeneous dimension:

Theorem 1.7 (Bass [1]). Let Γ be a finitely generated nilpotent group with homogeneous
dimension Q. Then Γ has polynomial growth BΓ(N) ' NQ.

A deep theorem of Gromov provided a converse:

Theorem 1.8 (Gromov [7]). Let Γ be a finitely generated group with polynomial growth.
Then Γ is virtually nilpotent.

More recently, quantitative and more direct proofs have been provided by van den Dries -
Wilkie, Kleiner, and most recently by Shalom-Tao [11] (see also Tao’s blog).

1.2 Lie Groups

A Lie group G is a smooth manifold with a group structure whose product operation and
inverse operation are smooth. The Lie algebra g of G is the vector space of left-invariant
vector fields on G. The Lie derivative of vector fields induces the Lie bracket on g by

[ξ, η] = LX(Y ) = ξη − ηξ.

Alternately, on may identify the vector spaces g = T1G, where T1G is the tangent space at
the identity of G. In this case, one may speak of the exponential map exp : g→ G.

Theorem 1.9. Let G be a simply connected Lie group with Lie algebra g. Then the expo-
nential map exp : g→ G is a diffeomorphism.

In particular, any simply connected Lie group is diffeomorphic to Rn for some n. Its group
structure can be inferred from the Lie bracket on g by means of the Campbell-Hausdorff
formula (see [9]).
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Definition 1.10. A Lie algebra g is nilpotent if the lower central series g0 = g, gi+1 = [g, gi]
terminates with gc the last non-zero algebra.

Theorem 1.11. A simply-connected Lie group is nilpotent if and only if its Lie algebra is
nilpotent.

1.3 Malcev Completion

Definition 1.12. Let Γ be a finitely generated nilpotent group. Elements g1, . . . , gm ∈ Γ
are the canonical generators of Γ if every g ∈ Γ may be written uniquely as

g = ga11 · · · gamm (1.3)

for a1, . . . , am ∈ Z. A group need not have canonical generators.

Note that canonical generators provide a bijection between Γ and Zr that preserves some
group structure. For example, the subgroup {gai0i0

· · · gamm | ai ∈ Z} is normal in Γ.

Theorem 1.13 (Malcev [9]). Let Γ be a finitely generated nilpotent group with no torsion
elements. Then Γ has canonical generators.

The key to Theorem 1.13 is to consider the abelian group Γ/[Γ,Γ] and the lower-rank
nilpotent group [Γ,Γ]. By an inductive assumption, both have canonical generators, and
Malcev shows how to combine them into canonical generators for Γ.

Recall that a lattice in a Lie group G is a discrete subgroup Γ with G/Γ compact. Using
canonical generators, Malcev proves the “Malcev completion” theorem:

Theorem 1.14 (Malcev [9]). Let Γ be a finitely generated nilpotent group with no torsion
elements. Then Γ is a lattice in a unique nilpotent Lie group G diffeomorphic to Rr for
some r.

The basic idea is to consider (1.3) and show that the group structure of Γ is given by
polynomials in the ai. These polynomials define a group structure on G = Rr by taking
ai ∈ R rather than ai ∈ Z. It is clear that G is a Lie group and Γ ⊂ G is a lattice.

Conversely, multiplication in a simply connected nilpotent Lie group G is defined by polyno-
mials whose coefficients are referred to as the structural coefficients of G. If the coefficients
are rational, the Malcev completion may be reversed:

Theorem 1.15 (Malcev [9]). Let G be a nilpotent Lie group with rational structural coeffi-
cients. Then G has a lattice.

Example 1.16. The familiar example of Malcev completion is the extension Zn ↪→ Rn: an
element of Zn has the form a1e1 + . . .+ anen for ai ∈ Z, and an element of Rn has ai ∈ R.

Example 1.17. The integer Heisenberg group H2n+1
Z is defined as

H2n+1
Z = {a1, b1, . . . , an, bn, t | [ai, bi] = t and all other brackets are trivial} (1.4)

The Heisenberg group is nilpotent of class 2. As in Example 1.5, any word in the generators
may be normalized to have the form

ac11 b
c2
1 · · · ac2n−1

n bc2nn tc2n+1 . (1.5)

One then views H2n+1
Z as the integer lattice within the real Heisenberg group

H2n+1
R = Cn × R with (z, t) ∗ (z′, t′) = (z + z′, t+ t′ + Im〈z, z′〉), (1.6)

where 〈·, ·〉 is the standard Hermitian pairing of complex vectors.
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1.4 Carnot Groups

Definition 1.18. Suppose a simply connected nilpotent Lie group G has a Lie algebra g
with decomposition

g = V1 ⊕ · · · ⊕ Vc (1.7)

such that the Vi are linear subspaces and furthermore Vi+j = span[Vi, Vj ] for all i, j.2 Then
G is called a Carnot group of homogeneous dimension Q =

∑
i idimVi.

Every Carnot group G is equipped with a one-parameter family of equivariant maps δr :
G→ G, r ∈ R, such that the induced map on g is

dδr : (v1, v2, . . . , vc) 7→ (rv1, r
2v2, . . . , r

cvc). (1.8)

Note in particular that δr commutes with the Lie bracket operation on g.

It is common to give a Carnot group a Riemannian metric by taking an inner product g on
g such that the Vi are orthogonal and extending g to a left-invariant tensor on G.

Various choices of the Riemannian metric g are bi-Lipschitz equivalent. However, sequences
of such metrics may degenerate. In particular, one may desire a metric on which δr acts as
a homothety.

Consider the metric rδr∗g, obtained by pulling back a δr-dilation of g and then rescaling it
by r. By (1.8), rδr∗g agrees with g on the subspace V1, and more generally agrees with g
up to a factor of ri−1 on the subspaces Vi. As r →∞, the sequence rδr∗g degenerates to a
sub-Riemannian metric:

Definition 1.19. Let G be a Carnot group and gCC an inner product defined only on the V1

subspace of g, and assumed infinite for all other pairings of vectors in g. The corresponding
left-invariant tensor on G is called a sub-Riemannian or Carnot-Carathéodory (CC) inner
product on G.

A path γ : R → G is said to be horizontal if it almost everywhere lies along the vector
fields in V1: γ̇(t) ∈ V1(γ(t)). For p, q ∈ G, define the CC metric dCC(p, q) to be the infimal
gCC-length of horizontal paths between them.

Theorem 1.20 (Chow). Any two points in G are connected by a horizontal path. In
particular, dCC is a metric.

The key idea in the proof (see [5]) is that the algebraic condition span[V1, V1] = V2 may be
interpreted as the geometric statement “one may travel in a V2 direction by attempting to
make a loop along the V1 subspace”. In intuitive terms, one may travel vertically in G by
going horizontally along a spiral staircase.

Recall that the Švarc-Milnor lemma ([3] p.140) states:

Theorem 1.21 (Švarc-Milnor). Let X be a length space. If Γ acts geometrically on X, then
Γ is finitely generated and quasi-isometric to X.

Thus, if Γ is a lattice in a Carnot group G, it is quasi-isometric to G with both the Rie-
mannian and Carnot-Carathéodory metrics. Because the CC metric is homogeneous, its
geometry corresponds to the large-scale geometry of the Riemannian metric on G and the
word metric on Γ. In particular, the asymptotic cone of Γ is (G, dCC).

2The space [Vi, Vj ] need not be a linear subspace of Vi+j . This is used in Lecture 9.

4



A vector not in V1 may be represented by multiple Lie brackets, so the geodesics in G are
not unique. Because a vector ξ ∈ Vi is written as i iterated brackets of vectors in V1, the
corresponding directions are fractal: (exp1 Vi, dCC) is bi-Lipschitz to (RdimVi , i

√
dE), and

the Hausdorff dimension of exp1 Vi is idim(Vi).

For a horizontal submanifold Mk ⊂ G, δr dilates the k-volume of M by factor rk. In
particular, dCC is dilated by factor r. The Riemannian volume growth and the CC Hausdorff
dimension of an arbitrary submanifold M ⊂ G depends on the splitting of its tangent space,
and can be computed as a weighted sum using (1.8). For example, if Mk has tangent
directions strictly along V3, then its Hausdorff dimension in the CC metric is 3k. The
dilation δr distorts its k-volume in the Riemannian metric by a factor of r3K .

2 Filling Inequalities

2.1 Dehn Functions

Recall first the definition of a finitely presented group.

Definition 2.1. Let g1, . . . , gm be arbitrary symbols, and F the free group on g1, . . . , gm.
Let r1, . . . , rk ∈ F and R the free group on r1, . . . , rk. Because the ri are elements of F, there
is a natural homomorphism ι : R → F. Denote by R the normal closure of ι(R) in F. If a
group Γ is isomorphic to F/R, it is said to be a finitely presented group with presentation
〈g1, . . . , gm | r1, . . . , rk〉.

A basic invariant of a finitely presented group is its Dehn function:

Definition 2.2. Let w ∈ R. Define |w| to be the length of w as an element of F, and the
Dehn function δγ(N) as:

δΓ(w) = minimum length of W as a word in conjugates of r1, . . . , rk,

δΓ(N) = min{δΓ(w) | w ∈ R, |w| ≤ N}.

As with the growth function, different choices of presentation yield different Dehn functions.
However, it is clear that δΓ is well-defined up to the equivalence ' from Definition 1.3.

Recall that if Γ is finitely presented, it acts geometrically on an associated “Cayley complex”:

Definition 2.3. Let Γ be a finitely presented group. The Cayley complex of Γ is a cellular
2-complex whose points are the elements of Γ, edges are conjugates of the generators gi,
and faces are conjugates of the relators ri.

A word w ∈ F may be thought of as a sequence of edges in the Cayley complex of Γ starting
at the identity. The sequence of edges forms a loop exactly if w ∈ R. It may be contracted
back to the identity along the faces of the Cayley complex, and δΓ(w) gives the minimal
number of faces that need to be crossed.

Interest in Dehn functions is primarily stimulated by the following deep result of Gromov:

Theorem 2.4 (Gromov [8]). Let Γ be finitely presented group. Then δΓ(N) ' N exactly if
Γ is a hyperbolic group.

We will next discuss certain results concerning the Dehn functions of nilpotent groups.
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2.2 Free Nilpotent Groups and General Bounds on Dehn Functions

Definition 2.5. Let F = 〈g1, . . . , gn〉 be a free group on n generators. Let Fi be the ith

term of the lower central series for F and define Fc = F/Fc+1 to be the free nilpotent group
of class c on n generators.

We are interested in computing the Dehn function δFc
. Recall from Example 1.5 that if we

were interested in the growth function, we would take a word in F, say w = g1g2g1g
−1
3 , and

put it in normal form like g2
1g2g

−1
3 [g1, g2]−1. Finding a normal form for all elements gives

an upper bound on the number of words of a given length.

In the case of the Dehn function, we are interested writing a word w representing the identity
as

w = a1r
ε1
1 a
−1
1 a2r

ε2
2 a
−1
2 · · · alr

εl
l a
−1
l , (2.1)

where ai ∈ F, εi = ±1, ri ∈ Fc+1, l ∈ N. We then ask what the smallest l0 is such that every
w of length less than N may be written in the form (2.1) for l ≤ l0.

Unfortunately, we can’t normalize (2.1) as is: we are working in F, which has trivial center.

Definition 2.6. The centralized Dehn function of Γ = 〈g1, . . . , gm | r1, . . . , rk〉 is given by

δcent
Γ (ω) = min{l | w ∈ a1r

ε1
1 a
−1
1 · · · alr

εl
l a
−1
l [R,F] for some choice of ai, ri, εi},

δcent
Γ (N) = min{δcent

Γ (ω) | ω ∈ R, |ω| ≤ N}.

Clearly, δcent
Γ ≤ δΓ and the equivalence class δcent

Γ is independent of the generating set of Γ.
Considering cosets makes normalization arguments like that in Example 1.5 possible, and a
combinatorial argument shows:

Theorem 2.7 (Baumslag-Miller-Short [2]). Let Fc be a free nilpotent group of class c and
finite rank at least 2. Then N c+1 4 δcentFc

(4 δFc
).

Using the action of Fc on its Cayley complex, Bridson-Pittet in [4] showed that the above
estimate is in fact sharp: δFc

(N) ' N c+1. Furthermore, the following was proven more
recently:

Theorem 2.8 (Gersten-Holt-Riley[6]). Let Γ be a finitely presented nilpotent group of class
c. Then δΓ(N) 4 N c+1.

Perhaps counter-intuitively, free nilpotent groups realize this bound. As we show below,
other groups do not.

The centralized Dehn function computes filling volume in R/[R,F]. In fact, considering
the long exact homology sequence associated with the presentation Γ = F/R shows that
R/[R,F ] splits as

R/[R,F ] ∼= H2Γ⊕ Zl (2.2)

for some l, where H2Γ is the second integer homology of Γ. It turns out that the Zl term
contributes little to δcent, and one can use (2.2) to compute the δcent for groups with known
H2Γ. For example, Baumslag, et al. show:

Theorem 2.9 (Baumslag-Miller-Short [2]). Let Γ be a finitely presented group with finite
H2Γ. Then δcentΓ (N) ' N .
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2.3 Central Products and Non-Polynomial Dehn Functions

Given Theorem 2.8 and the results for free nilpotent groups, one might conjecture that the
Dehn function of a nilpotent group of class c is N c+1, or at least polynomial. Below, we
consider class-2 nilpotent Lie groups and show that this is not the case.

According to Theorem 2.8, a class-2 nilpotent group has at most cubic Dehn function. In
[10], Olshanskii and Sapir provide a combinatorial proof that the higher Heisenberg groups
have, in fact, a quadratic Dehn function.

Theorem 2.10 (Olshanskii-Sapir [10]). For n ≥ 2, the integer Heisenberg group H2n+1
Z has

quadratic Dehn function.

Furthermore, they claim their proof can be adjusted to prove the following result, whose
proof appears in [13]:

Theorem 2.11. Let Γ be a a nilpotent finitely presented group of class 2 with quadratic
Dehn function. Denote by Γ2 the class-2 nilpotent group Γ × Γ/ ∼, with (g, 1) ∼ (1, g) for
g ∈ [Γ,Γ]. Then δΓ2(N) 4 N2 log(N).

We have thus demonstrated groups with Dehn functions N c+1 and N2. We have provided
a bound of N2 log(N) for another group, but have not claimed that it is sharp. The next
lecture (Lecture 9) discusses the following result:

Theorem 2.12 (Wenger [12]). There exists a nilpotent group with non-polynomial Dehn
function.

The key idea in the construction is that quotients of nilpotent Lie groups by central sub-
groups not generated by commutators cannot have quadratic Dehn function.

2.4 Lipschitz Chains and Filling Volume

We now define Dehn and filling functions for Lie groups, and provide some preliminary
definitions.

Definition 2.13. Let M be a Riemannian manifold and Σk the standard k-simplex. A
singular Lipschitz k-chain f is a formal finite sum f =

∑
i aifi where ai ∈ R and fi : Σk →M

are Lipschitz maps. Note that the boundary of a Lipschitz chain, defined piecewise, is a
Lipschitz chain.

To define the mass of a Lipschitz chain, we refer to the following standard result, which also
applies in the Riemannian setting:

Theorem 2.14 (Rademacher’s Theorem). Let f : Rn → Rm be Lipschitz. Then f is almost
everywhere differentiable.

Definition 2.15. Let f be a Lipschitz chain, as above. The mass of f is the weighted sum

massk(f) =
∑
i

|ai|
∫
Bk

|Jfi| dV. (2.3)

There are two natural filling functions for a Riemannian manifold:
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Definition 2.16. Suppose f : Si →M is Lipschitz. Define the ith Dehn function of M by:

δi(f) = inf{massi+1(g : Bi+1 →M) | g is Lipschitz and ∂g = f},
δi(V ) = sup{FV i(f) | f : Si →M is Lipschitz and massi(f) ≤ V }.

Definition 2.17. Suppose f is a singular Lipschitz i + 1-chain in M . Define the filling
volume in M as:

FV i+1(f) = inf{massi+1(g) | g is a singular Lipschitz i+ 1-chain and ∂g = f},
FV i+1(V ) = sup{FV i+1(f) | f is a singular Lipschitz i-chain and massi(f) ≤ V }.

The equivalence classes of δi and FV i+1 do not depend on the choice of the Riemannian
metric. Unfortunately, the two functions do not always agree for small i. See Lecture 5 or
[13] for the relationship between them.

The Federer-Fleming Decomposition Theorem is the main tool for analyzing the filling
functions in manifolds. We state the variation of the theorem found in [13]:

Theorem 2.18 (Federer-Fleming). Suppose M is a triangulated manifold and f is a sin-
gular Lipschitz k-chain of mass l. Then there exists a simplicial k-chain f ′ and a singular
Lipschitz k + 1-chain g such that:

1. ∂g = f ′ − f,

2. massk(f ′) ≤ cl,

3. massk+1(g) ≤ cl,

where c depends only on M and its triangulation.

Suppose a finitely generated group Γ acts geometrically on a manifold M . By Theorem
2.18, we have that δΓ ' δ1(M). In particular, the Dehn function of a torsion-free nilpotent
group agrees with the first Dehn function of its completion.

2.5 Filling Volume Bounds

In this section, we discuss the following theorem, which in particular provides an example
of Lie groups with quadratic Dehn functions :

Theorem 2.19 (Young [13]). Let c, k > 0. The jet group Jm(Rk), when endowed with a
left-invariant Riemannian metric, has

FV i(V ) ' δi−1(V ) ' V
i

i−1 , (2.4)

where i ≤ k, and

FV k+1(V ) ' δk(V ) ' V
k+m+1

k . (2.5)

The jet groups Jm(Rk) are defined below. These are class-m Carnot groups that include
the Heisenberg groups H2k+1

Z = J1(Rk). Jet groups have lattices, so we have, in contrast
to the bound δΓ(N) 4 N c+1 of Theorem 2.8,
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Corollary 2.20. Let c > 0. Then there exists a finitely presented nilpotent group of class
c such that δΓ is quadratic.

The proof of Theorem 2.19 consists of two parts: the construction of well-behaved triangu-
lations of the jet groups, and a procedure for filling cycles in such spaces. We first compute
δ1(R2) to provide an example that demonstrates the filling method.

Example 2.21. Suppose f : S1 → R2 is a loop in R2 of length l > 1. Approximate f by a
path fi along the edges of the integer lattice. The length of fi is approximately l. Repeat,
replacing the integer grid with 2iZ2 to obtain an approximation fi. For i0 with 2i0 � l, we
have fi0 = 0.

Next, consider the difference between fi and fi+1. The first approximation fi is composed of
roughly l2−i segments of length 2i, and is connected to fi+1 by an interpolating “annulus”
gi made up of roughly l2−i squares of area 22i. More precisely, we have ∂gi = fi−fi+1, and
mass2(gi) is roughly l2i. We then have:

∂(g1 + . . .+ gi0) = f

mass2(g1 + . . .+ gi0) ≈
i0∑
i=1

l2i ≤ l2i0 ≈ l2.

The fact that the grids 2iZ2 are related by homotheties is essential, as it provides a uniform
way to approximate f and relate the approximations fi.

Carnot groups provide the natural setting for generalizing Example 2.21. In particular, one
works with the jet groups Jm(Rk), which have a large horizontal subspace.

Definition 2.22. A Lipschitz triangulation τ of a Carnot group G is k-horizontal if every
k-simplex of the triangulation is embedded horizontally in G.

Note that the k-simplices of a horizontal triangulation rescale by a factor of r under the map
δr : G → G. Given a horizontal triangulation, Young uses the Federer-Fleming Theorem
2.18 to approximate a cycle f by simplicial cycles fi at various scales, and relates the
approximations fi and fi+1 in a uniform way.

Definition 2.23. Let k ≥ 2. The gradient of a function f : Rk → R can be interpreted as
a section of the cotangent bundle of RK given by df : Rk → T ∗Rk. Similarly, derivatives of
order up to m are sections of the jet bundle Jm(Rk) = Rk ×W , where

W = R× (R∗)k × S2((R∗)k)× · · · × Sm((R∗)k)

and Si denotes the ith symmetric power. A function f : Rk → R has a prolongation
jmf : Rn → Jm(Rn) defined at each point p ∈ Rk by placing the ith partials of f at p in
the Si((R∗)k) component of W .

Consider a point p = (x, x′) ∈ Jm(Rn). There is a unique polynomial fp in k variables and
of order m such that p is in the image of jmfp. That is, jk(fp)(x) = x′. The differential
data x′ may be transferred to lie over another point y ∈ Rn as jmfp(y), the partials of fp
over y.

Provide Jm(Rn) with a group structure by taking

(x, x′) ∗ (y, y′) = (x+ y, jmfp(y) + y′) (2.6)

With this group structure, Jm(Rn) is a Carnot group of class m+1. As Young demonstrates,
the structural constants of Jm(Rn) are rational, so Jm(Rn) contains lattices.
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Example 2.24. The Heisenberg group H2n+1
R is isomorphic to J1(Rn).

Young uses the key fact that prolongations of smooth maps are horizontal to construct m-
horizontal triangulations of the jet groups. Since n may be taken arbitrarily high without
affecting the nilpotence class of the jet group, they may be used to study filling volume in
arbitrarily high dimension.

2.6 Dehn Functions of Lie Group Quotients

The following theorem deals with the first Dehn function δ1 of a Carnot group G. However,
the results may be translated to a statement about a lattice Γ ⊂ G. Note that a general
Carnot group need not have a lattice.

Theorem 2.25 (Young [13]). Let G be a class-2 nilpotent Lie group with Lie algebra g and
a quadratic Dehn function δ1. Suppose W ⊂ g is a subalgebra generated by elements of the
form [ξ, η], and G′ is a Lie group with Lie algebra g/W . Then G′ has a quadratic Dehn
function δ1.

The proof of Theorem 2.25 focuses on the geometric interpretation of the commutator.

More specifically, note that g decomposes as V1⊕V2 and suppose W is generated by a single
commutator [w1, w2] with w1, w2 ∈ V1. Then a loop γ of length l in G′ lifts to a path γ̃ in G
between 0 and expα[w1, w2] for some α. We may assume α > 0, and Young shows α ' l2.

Let η̃ be a path in G corresponding to exponentiating, in order, the vectors
√
αw1,

√
αw2,

−
√
αw1, −

√
αw2. This curve has length 4

√
α and connects the same endpoints as γ. Fur-

thermore, it corresponds to a loop η in G′ that may be filled by a square of area α.

Because G has a quadratic Dehn function, γ̃ may be homotoped to η̃ using a homotopy
of area comparable to l2. This may be projected to G′ to homotope γ to η, which is then
closed off using the square of length approximately l2.
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