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where Amax(p) and Anin(p) are the eigenvalues of df|, of
maximum and minimum norm.
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Theorem (Gehring)

Every quasi-conformal map of B" extends to a map of B™,
quasi-conformal on S"1.

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Vaisala)

Every quasi-conformal map of S"~! extends to a quasi-conformal
map of B".
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Real hyperbolic space

Definition

Real hyperbolic space Hy, is the ball B"
with a Riemannian metric invariant
under the group O(n,1).

Definition
A function f : X — Y is L-bi-Lipschitz
if for all x,x’ € X

LY dx (x,x") < dy(fx, ') < Ldx(x,x")

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Vaisala)

Let f : S"1 — S"~1 be quasi-conformal. Then f extends to a
map on B", bi-Lipschitz with respect to the hyperbolic metric.
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Quasi-symmetry

Question

Let ds be a metric on S"~1 and dg a metric on B".

Let f: S™1 — S"~! be quasi-conformal with respect to ds.
Does f extend continuously to F : B" — B" so that F|gs is
bi-Lipschitz with respect to dg?

Definition
Let X, Y be metric spaces and f : X — Y a homeomorphism.
Then f is an n-quasi-symmetry if for all x, x', x” € X

dy (fx, ix') dx (x,x")
TR AR
dy (. ix") dx (x, ")

where 77 : [0,00) — [0, 00) is a homeomorphism.

Remark
Quasi-symmery generalizes quasi-conformality to metric spaces.
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Definition
Let (H, dy) be a metric space homeomorphic to R"~1. A stacked
tiling on His (I', T, a, K) satisfying:
1. T Clsom(H) is a discrete co-compact subgroup.
« is a dilation by some a > 1.
alfa~lcT,
K is a fundamental domain for I'.

aK = U,er K for some finite I" C T.

AR

Definition
A metric similarity space HT with base H is H x R™ with a
complete Riemannian metric so that:

1. T acts by isometries in the first factor.
2. « acts by the isometry (h, t) — (ah, at).
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r—zn-1 H = Heisenberg group H
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Theorem (L.)

Let H* be a metric similarity space of dimension n # 4 with base
H. Every quasi-symmetry of H extends continuously to a
bi-Lipschitz map of H™. Conversely, every bi-Lipschitz map of H™
extends to a quasi-symmetry of H.
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Gromov hyperbolic spaces

Definition
Let X be a geodesic metric space, denoting geodesic segments by
[-,-], and let § > 0. X is (J-)hyperbolic if for all x,x",x" € X,
[x,x"] € Ns([x,xTU [x, x"]).
Definition
Let X be a hyperbolic space. Define the boundary of X by
0X = {geodesic rays in X} /finite Hausdorff distance.

Let 0 € X and write (&|n)o = d(0, [£,7])-
A metric on X is a-visual if it is quasi-symmetric to the expression

do.a(&,m) = e—a(&lno
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Theorem (Bonk-Schramm)
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Proof sketch: extension to H

Theorem (Bonk-Schramm)

Let (X, dx) be a complete, bounded metric space of diameter D.
Then there is a hyperbolic metric on Con(X) = X x (0, D] so that
dx is a visual metric on 9Con(X). Every quasi-isometry of Con(X)
extends to a quasi-symmetry of X.

Theorem (L.)

Let HT be a metric similarity space with base H. Then H™ is
quasi-isometric to Con(H).

Proof sketch.
Adjacency graph for the tiling. O



