
Bi-Lipschitz extension from boundaries of certain
hyperbolic spaces

Anton Lukyanenko

University of Illinois Urbana-Champaign

January 5, 2011



Outline

1. Quasi-conformal extension

2. Bi-Lipschitz extension

3. Metric similarity spaces

4. Boundaries of hyperbolic spaces



Outline

1. Quasi-conformal extension

2. Bi-Lipschitz extension

3. Metric similarity spaces

4. Boundaries of hyperbolic spaces



Outline

1. Quasi-conformal extension

2. Bi-Lipschitz extension

3. Metric similarity spaces

4. Boundaries of hyperbolic spaces



Outline

1. Quasi-conformal extension

2. Bi-Lipschitz extension

3. Metric similarity spaces

4. Boundaries of hyperbolic spaces



Conformal extension

Definition
A differentiable function f : Rn → Rn is conformal if df |p ∈ O(n)
for all p.

Theorem
Every conformal map of Sn−1 is a Möbius map and extends to a
conformal map of Bn. Conversely, every conformal map of Bn

extends to a map of Bn, conformal on Sn−1.
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Quasi-conformal extension

Definition
A differentiable function f : Rn → Rn is k-quasi-conformal if for
almost all p df |p satisfies ∣∣∣∣λmax(p)

λmin(p)

∣∣∣∣ < k

where λmax(p) and λmin(p) are the eigenvalues of df |p of
maximum and minimum norm.

Theorem (Gehring)

Every quasi-conformal map of Bn extends to a map of Bn,
quasi-conformal on Sn−1.

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Väisälä)

Every quasi-conformal map of Sn−1 extends to a quasi-conformal
map of Bn.
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Real hyperbolic space

Definition
Real hyperbolic space Hn

R is the ball Bn

with a Riemannian metric invariant
under the group O(n, 1).

Definition
A function f : X → Y is L-bi-Lipschitz
if for all x , x ′ ∈ X

L−1dX (x , x ′) ≤ dY (fx , fx ′) ≤ LdX (x , x ′)

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Väisälä)

Let f : Sn−1 → Sn−1 be quasi-conformal. Then f extends to a
map on Bn, bi-Lipschitz with respect to the hyperbolic metric.
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Quasi-symmetry

Question
Let dS be a metric on Sn−1 and dB a metric on Bn.
Let f : Sn−1 → Sn−1 be quasi-conformal with respect to dS .
Does f extend continuously to F : Bn → Bn so that F |Bn is
bi-Lipschitz with respect to dB?

Definition
Let X ,Y be metric spaces and f : X → Y a homeomorphism.
Then f is an η-quasi-symmetry if for all x , x ′, x ′′ ∈ X

dY (fx , fx ′)

dY (fx , fx ′′)
≤ η

(
dX (x , x ′)

dX (x , x ′′)

)
,

where η : [0,∞)→ [0,∞) is a homeomorphism.

Remark
Quasi-symmery generalizes quasi-conformality to metric spaces.
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Metric similarity spaces

Definition
Let (H, dH) be a metric space homeomorphic to Rn−1. A stacked
tiling on H is (Γ, Γ′, α,K ) satisfying:

1. Γ ⊂ Isom(H) is a discrete co-compact subgroup.

2. α is a dilation by some a > 1.

3. αΓα−1 ⊂ Γ,

4. K is a fundamental domain for Γ.

5. αK = ∪γ∈Γ′K for some finite Γ′ ⊂ Γ.

Definition
A metric similarity space H+ with base H is H × R+ with a
complete Riemannian metric so that:

1. Γ acts by isometries in the first factor.

2. α acts by the isometry (h, t) 7→ (αh, at).
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Metric similarity spaces

H = Euclidean space Rn−1

H+ = Hn
R

Γ = Zn−1 H = Heisenberg group Hn−1

H+ = Hn
C

Γ = Hn−1(Z)

Theorem (L.)

Let H+ be a metric similarity space of dimension n 6= 4 with base
H. Every quasi-symmetry of H extends continuously to a
bi-Lipschitz map of H+. Conversely, every bi-Lipschitz map of H+

extends to a quasi-symmetry of H.
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Proof sketch: extension to H+

1. Start with f : H → H quasi-symmetric.

2. Näıve extension f̃

f̃ (z , t) =

(
f (z , t), sup

|z−w |=t
|f (z)− f (w)|

)
3. Tiling of H+

4. Piecewise-linear approximation of f̃ on disjoint tiles

5. Sullivan extension of BL approximation to new tiles
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2. Näıve extension f̃

f̃ (z , t) =

(
f (z , t), sup

|z−w |=t
|f (z)− f (w)|

)
3. Tiling of H+

4. Piecewise-linear approximation of f̃ on disjoint tiles

5. Sullivan extension of BL approximation to new tiles



Proof sketch: extension to H+

1. Start with f : H → H quasi-symmetric.
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Gromov hyperbolic spaces

Definition
Let X be a geodesic metric space, denoting geodesic segments by
[·, ·], and let δ ≥ 0. X is (δ-)hyperbolic if for all x , x ′, x ′′ ∈ X ,

[x , x ′′] ⊂ Nδ([x , x ′] ∪ [x ′, x ′′]).

Definition
Let X be a hyperbolic space. Define the boundary of X by

∂X = {geodesic rays in X}/finite Hausdorff distance.

Let 0 ∈ X and write (ξ|η)0 = d(0, [ξ, η]).
A metric on X is a-visual if it is quasi-symmetric to the expression

d0,a(ξ, η) = e−a(ξ|η)0 .
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Proof sketch: extension to H

Theorem (Bonk-Schramm)

Let (X , dX ) be a complete, bounded metric space of diameter D.
Then there is a hyperbolic metric on Con(X ) = X × (0,D] so that
dX is a visual metric on ∂Con(X ). Every quasi-isometry of Con(X )
extends to a quasi-symmetry of X .

Theorem (L.)

Let H+ be a metric similarity space with base H. Then H+ is
quasi-isometric to Con(H).

Proof sketch.
Adjacency graph for the tiling.
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