Bi-Lipschitz extension from boundaries of certain hyperbolic spaces

Anton Lukyanenko

University of Illinois Urbana-Champaign

January 5, 2011

Outline

1. Quasi-conformal extension

- 2. Bi-Lipschitz extension
- 3. Metric similarity spaces
- 4. Boundaries of hyperbolic spaces

- $1. \ \ Quasi-conformal \ \ extension$
- 2. Bi-Lipschitz extension
- 3. Metric similarity spaces
- 4. Boundaries of hyperbolic spaces

- 1. Quasi-conformal extension
- 2. Bi-Lipschitz extension
- 3. Metric similarity spaces
- 4. Boundaries of hyperbolic spaces

- 1. Quasi-conformal extension
- 2. Bi-Lipschitz extension
- 3. Metric similarity spaces
- 4. Boundaries of hyperbolic spaces

A differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$ is conformal if $df|_p \in O(n)$ for all p.

Theorem

Every conformal map of S^{n-1} is a Möbius map and extends to a conformal map of $\overline{B^n}$. Conversely, every conformal map of B^n extends to a map of $\overline{B^n}$, conformal on S^{n-1} .

A differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$ is conformal if $df|_p \in O(n)$ for all p.

Theorem

Every conformal map of S^{n-1} is a Möbius map and extends to a conformal map of $\overline{B^n}$. Conversely, every conformal map of B^n extends to a map of $\overline{B^n}$, conformal on S^{n-1} .

A differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$ is conformal if $df|_p \in O(n)$ for all p.

Theorem

Every conformal map of S^{n-1} is a Möbius map and extends to a conformal map of $\overline{B^n}$. Conversely, every conformal map of B^n extends to a map of $\overline{B^n}$, conformal on S^{n-1} .

A differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$ is *k*-quasi-conformal if for almost all $p \ df|_p$ satisfies

$$\left| \frac{\lambda_{\max}(p)}{\lambda_{\min}(p)} \right| < k$$

where $\lambda_{\max}(p)$ and $\lambda_{\min}(p)$ are the eigenvalues of $df|_p$ of maximum and minimum norm.

Theorem (Gehring)

Every quasi-conformal map of B^n extends to a map of $\overline{B^n}$, quasi-conformal on S^{n-1} .

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Väisälä) Every quasi-conformal map of S^{n-1} extends to a quasi-conformal map of B^n .

A differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$ is *k*-quasi-conformal if for almost all $p \ df|_p$ satisfies

$$\left| \frac{\lambda_{\max}(p)}{\lambda_{\min}(p)} \right| < k$$

where $\lambda_{\max}(p)$ and $\lambda_{\min}(p)$ are the eigenvalues of $df|_p$ of maximum and minimum norm.

Theorem (Gehring)

Every quasi-conformal map of B^n extends to a map of $\overline{B^n}$, quasi-conformal on S^{n-1} .

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Väisälä) Every quasi-conformal map of S^{n-1} extends to a quasi-conformal map of B^n .

A differentiable function $f : \mathbb{R}^n \to \mathbb{R}^n$ is *k*-quasi-conformal if for almost all $p \ df|_p$ satisfies

$$\left| \frac{\lambda_{\max}(p)}{\lambda_{\min}(p)} \right| < k$$

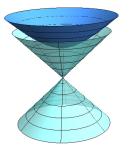
where $\lambda_{\max}(p)$ and $\lambda_{\min}(p)$ are the eigenvalues of $df|_p$ of maximum and minimum norm.

Theorem (Gehring)

Every quasi-conformal map of B^n extends to a map of $\overline{B^n}$, quasi-conformal on S^{n-1} .

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Väisälä) Every quasi-conformal map of S^{n-1} extends to a quasi-conformal map of B^n .

Real hyperbolic space



Definition

Real hyperbolic space $\mathcal{H}^n_{\mathbb{R}}$ is the ball B^n with a Riemannian metric invariant under the group O(n, 1).

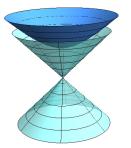
Definition

A function $f: X \to Y$ is *L*-bi-Lipschitz if for all $x, x' \in X$

 $L^{-1}d_X(x,x') \le d_Y(fx,fx') \le Ld_X(x,x')$

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Väisälä) Let $f : S^{n-1} \rightarrow S^{n-1}$ be quasi-conformal. Then f extends to a map on B^n , bi-Lipschitz with respect to the hyperbolic metric.

Real hyperbolic space



Definition

Real hyperbolic space $\mathcal{H}^n_{\mathbb{R}}$ is the ball B^n with a Riemannian metric invariant under the group O(n, 1).

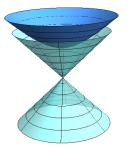
Definition

A function $f: X \to Y$ is L-bi-Lipschitz if for all $x, x' \in X$

 $L^{-1}d_X(x,x') \leq d_Y(fx,fx') \leq Ld_X(x,x')$

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Väisälä) Let $f : S^{n-1} \rightarrow S^{n-1}$ be quasi-conformal. Then f extends to a map on B^n , bi-Lipschitz with respect to the hyperbolic metric.

Real hyperbolic space



Definition

Real hyperbolic space $\mathcal{H}^n_{\mathbb{R}}$ is the ball B^n with a Riemannian metric invariant under the group O(n, 1).

Definition

A function $f: X \to Y$ is L-bi-Lipschitz if for all $x, x' \in X$

 $L^{-1}d_X(x,x') \leq d_Y(fx,fx') \leq Ld_X(x,x')$

Theorem (Beurling-Ahlfors, Ahlfors, Carleson, Tukia-Väisälä) Let $f : S^{n-1} \rightarrow S^{n-1}$ be quasi-conformal. Then f extends to a map on B^n , bi-Lipschitz with respect to the hyperbolic metric.

Question

Let d_S be a metric on S^{n-1} and d_B a metric on B^n . Let $f: S^{n-1} \to S^{n-1}$ be quasi-conformal with respect to d_S . Does f extend continuously to $F: \overline{B^n} \to \overline{B^n}$ so that $F|_{B^n}$ is bi-Lipschitz with respect to d_B ?

Definition

Let X, Y be metric spaces and $f : X \to Y$ a homeomorphism. Then f is an η -quasi-symmetry if for all $x, x', x'' \in X$

$$\frac{d_{\mathsf{Y}}(f_{\mathsf{X}}, f_{\mathsf{X}}')}{d_{\mathsf{Y}}(f_{\mathsf{X}}, f_{\mathsf{X}}'')} \leq \eta \left(\frac{d_{\mathsf{X}}(x, x')}{d_{\mathsf{X}}(x, x'')} \right),$$

where $\eta : [0,\infty) \to [0,\infty)$ is a homeomorphism.

Remark

Quasi-symmery generalizes quasi-conformality to metric spaces.

Question

Let d_S be a metric on S^{n-1} and d_B a metric on B^n . Let $f: S^{n-1} \to S^{n-1}$ be quasi-conformal with respect to d_S . Does f extend continuously to $F: \overline{B^n} \to \overline{B^n}$ so that $F|_{B^n}$ is bi-Lipschitz with respect to d_B ?

Definition

Let X, Y be metric spaces and $f: X \to Y$ a homeomorphism. Then f is an η -quasi-symmetry if for all $x, x', x'' \in X$

$$\frac{d_Y(f_X, f_{X'})}{d_Y(f_X, f_{X''})} \leq \eta \left(\frac{d_X(x, x')}{d_X(x, x'')} \right),$$

where $\eta: [0,\infty) \to [0,\infty)$ is a homeomorphism.

Remark

Quasi-symmery generalizes quasi-conformality to metric spaces.

Let (H, d_H) be a metric space homeomorphic to \mathbb{R}^{n-1} . A stacked tiling on H is $(\Gamma, \Gamma', \alpha, K)$ satisfying:

- 1. $\Gamma \subset \text{Isom}(H)$ is a discrete co-compact subgroup.
- 2. α is a dilation by some a > 1.
- 3. $\alpha \Gamma \alpha^{-1} \subset \Gamma$,
- 4. K is a fundamental domain for Γ .
- 5. $\alpha K = \bigcup_{\gamma \in \Gamma'} K$ for some finite $\Gamma' \subset \Gamma$.

Definition

A metric similarity space H^+ with base H is $H \times \mathbb{R}^+$ with a complete Riemannian metric so that:

- 1. Γ acts by isometries in the first factor.
- 2. α acts by the isometry $(h, t) \mapsto (\alpha h, at)$.

Let (H, d_H) be a metric space homeomorphic to \mathbb{R}^{n-1} . A stacked tiling on H is $(\Gamma, \Gamma', \alpha, K)$ satisfying:

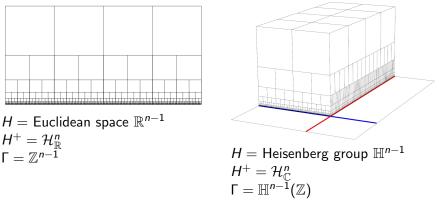
- 1. $\Gamma \subset \text{Isom}(H)$ is a discrete co-compact subgroup.
- 2. α is a dilation by some a > 1.
- 3. $\alpha \Gamma \alpha^{-1} \subset \Gamma$,
- 4. K is a fundamental domain for Γ .
- 5. $\alpha K = \bigcup_{\gamma \in \Gamma'} K$ for some finite $\Gamma' \subset \Gamma$.

Definition

A metric similarity space H^+ with base H is $H \times \mathbb{R}^+$ with a complete Riemannian metric so that:

- 1. Γ acts by isometries in the first factor.
- 2. α acts by the isometry $(h, t) \mapsto (\alpha h, at)$.

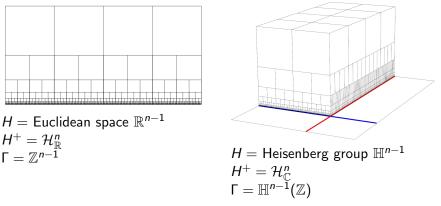
Metric similarity spaces



Theorem (L.)

Let H^+ be a metric similarity space of dimension $n \neq 4$ with base H. Every quasi-symmetry of H extends continuously to a bi-Lipschitz map of H^+ . Conversely, every bi-Lipschitz map of H^+ extends to a quasi-symmetry of H.

Metric similarity spaces



Theorem (L.)

Let H^+ be a metric similarity space of dimension $n \neq 4$ with base H. Every quasi-symmetry of H extends continuously to a bi-Lipschitz map of H^+ . Conversely, every bi-Lipschitz map of H^+ extends to a quasi-symmetry of H.

- 1. Start with $f : H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension f

$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$

- 3. Tiling of H⁺
- 4. Piecewise-linear approximation of f on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles

- 1. Start with $f : H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

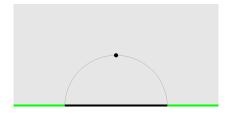
$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

- 3. Tiling of H⁴
- 4. Piecewise-linear approximation of f on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles

- 1. Start with $f: H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

- 3. Tiling of H^+
- 4. Piecewise-linear approximation of f on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles



- 1. Start with $f : H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

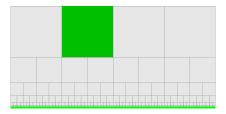
- 3. Tiling of H^+
- 4. Piecewise-linear approximation of f on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles

- 1. Start with $f: H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

3. Tiling of H^+

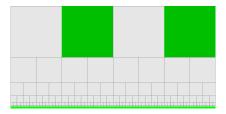
Piecewise-linear approximation of f on disjoint tiles
Sullivan extension of BL approximation to new tiles



- 1. Start with $f: H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

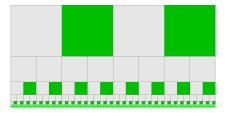
- 3. Tiling of H^+
- 4. Piecewise-linear approximation of \tilde{f} on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles



- 1. Start with $f: H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

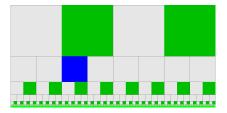
- 3. Tiling of H^+
- 4. Piecewise-linear approximation of \tilde{f} on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles



- 1. Start with $f: H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

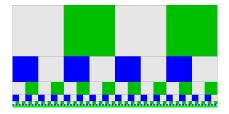
- 3. Tiling of H^+
- 4. Piecewise-linear approximation of \tilde{f} on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles



- 1. Start with $f: H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

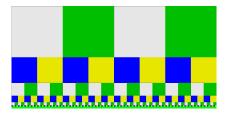
- 3. Tiling of H^+
- 4. Piecewise-linear approximation of \tilde{f} on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles



- 1. Start with $f: H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

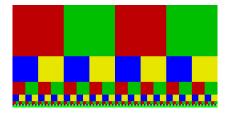
- 3. Tiling of H^+
- 4. Piecewise-linear approximation of \tilde{f} on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles



- 1. Start with $f: H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

- 3. Tiling of H^+
- 4. Piecewise-linear approximation of \tilde{f} on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles



- 1. Start with $f: H \rightarrow H$ quasi-symmetric.
- 2. Naïve extension \tilde{f}

$$\widetilde{f}(z,t) = \left(f(z,t), \sup_{|z-w|=t} |f(z) - f(w)|\right)$$

- 3. Tiling of H^+
- 4. Piecewise-linear approximation of \tilde{f} on disjoint tiles
- 5. Sullivan extension of BL approximation to new tiles

Definition

Let X be a geodesic metric space, denoting geodesic segments by $[\cdot, \cdot]$, and let $\delta \ge 0$. X is $(\delta$ -)hyperbolic if for all $x, x', x'' \in X$,

$$[x,x''] \subset N_{\delta}([x,x'] \cup [x',x'']).$$

Definition

Let X be a hyperbolic space. Define the boundary of X by

 $\partial X = \{\text{geodesic rays in } X\}/\text{finite Hausdorff distance.}$

Let $0 \in X$ and write $(\xi|\eta)_0 = d(0, [\xi, \eta])$. A metric on X is *a-visual* if it is quasi-symmetric to the expression

$$d_{0,a}(\xi,\eta)=e^{-a(\xi|\eta)_0}$$

Definition

Let X be a geodesic metric space, denoting geodesic segments by $[\cdot, \cdot]$, and let $\delta \ge 0$. X is (δ -)hyperbolic if for all $x, x', x'' \in X$,

$$[x,x''] \subset N_{\delta}([x,x'] \cup [x',x'']).$$

Definition

Let X be a hyperbolic space. Define the boundary of X by

 $\partial X = \{\text{geodesic rays in } X\}/\text{finite Hausdorff distance.}$

Let $0 \in X$ and write $(\xi | \eta)_0 = d(0, [\xi, \eta])$. A metric on X is *a-visual* if it is quasi-symmetric to the expression

$$d_{0,a}(\xi,\eta)=e^{-a(\xi|\eta)_0}.$$

Definition

Let X be a geodesic metric space, denoting geodesic segments by $[\cdot, \cdot]$, and let $\delta \ge 0$. X is $(\delta$ -)hyperbolic if for all $x, x', x'' \in X$,

$$[x,x''] \subset N_{\delta}([x,x'] \cup [x',x'']).$$

Definition

Let X be a hyperbolic space. Define the boundary of X by

 $\partial X = \{\text{geodesic rays in } X\}/\text{finite Hausdorff distance.}$

Let $0 \in X$ and write $(\xi|\eta)_0 = d(0, [\xi, \eta])$. A metric on X is *a-visual* if it is quasi-symmetric to the expression

$$d_{0,a}(\xi,\eta)=e^{-a(\xi|\eta)_0}.$$

Definition

Let X be a geodesic metric space, denoting geodesic segments by $[\cdot, \cdot]$, and let $\delta \ge 0$. X is $(\delta$ -)hyperbolic if for all $x, x', x'' \in X$,

$$[x,x''] \subset N_{\delta}([x,x'] \cup [x',x'']).$$

Definition

Let X be a hyperbolic space. Define the boundary of X by

 $\partial X = \{\text{geodesic rays in } X\}/\text{finite Hausdorff distance.}$

Let $0 \in X$ and write $(\xi|\eta)_0 = d(0, [\xi, \eta])$. A metric on X is *a-visual* if it is quasi-symmetric to the expression

$$d_{0,a}(\xi,\eta) = e^{-a(\xi|\eta)_0}$$

Theorem (Bonk-Schramm)

Let (X, d_X) be a complete, bounded metric space of diameter D. Then there is a hyperbolic metric on $Con(X) = X \times (0, D]$ so that d_X is a visual metric on $\partial Con(X)$. Every quasi-isometry of Con(X) extends to a quasi-symmetry of X.

Theorem (L.)

Let H^+ be a metric similarity space with base H. Then H^+ is quasi-isometric to Con(H).

Proof sketch. Adjacency graph for the tiling.

Theorem (Bonk-Schramm)

Let (X, d_X) be a complete, bounded metric space of diameter D. Then there is a hyperbolic metric on $Con(X) = X \times (0, D]$ so that d_X is a visual metric on $\partial Con(X)$. Every quasi-isometry of Con(X) extends to a quasi-symmetry of X.

Theorem (L.)

Let H^+ be a metric similarity space with base H. Then H^+ is quasi-isometric to Con(H).

Proof sketch.

Adjacency graph for the tiling.