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Abstract

We discuss the Heisenberg group Φn and its mappings from three perspectives.

As a nilpotent Lie group, Φn can be viewed as a generalization of the real

numbers, leading to new notions of base-b expansions and continued fractions.

As a metric space, Φn serves as an infinitesimal model (metric tangent space) of

some sub-Riemannian manifolds and allows one to study derivatives of mappings

between such spaces. As a subgroup of the isometry group of complex hyperbolic

space Hn+1
C , Φn becomes a large-scale model of a rank-one symmetric space and

provides rigidity results in Hn+1
C .

After discussing homotheties and conformal mappings of Φn, we show the

convergence of base-b and continued fraction expansions of points in Φn, and

discuss their dynamical properties.

We then generalize to sub-Riemannian manifolds and their quasi-conformal

and quasi-regular mappings. We show that sub-Riemannian lens spaces admit

uniformly quasi-regular (UQR) self-mappings, and use Margulis–Mostow deriva-

tives to construct for each UQR self-mapping of an equiregular sub-Riemannian

manifold an invariant measurable conformal structure.

Turning next to hyperbolic spaces, we recall the relationship between quasi-

isometries of Gromov hyperbolic spaces and quasi-symmetries of their bound-

aries. We show that every quasi-symmetry of Φn lifts to a bi-Lipschitz mapping

of Hn+1
C , providing a rigidity result for quasi-isometries of Hn+1

C . We conclude

by showing that if Γ is a lattice in the isometry group of a non-compact rank

one symmetric space (except H1
C = H2

R), then every quasi-isometric embedding

of Γ into itself is, in fact, a quasi-isometry.
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Chapter 1

Introduction

In a variety of situations, ranging from parallel parking to neurophysiology, one

is interested in modeling non-holonomic phenomena that involve local but not

global motion constraints. For example, in parallel parking one is interested in

controlling the position and angle of the car, but directly controls only the angle

and speed of the front wheels. This disconnect is fundamentally different from

Euclidean geometry, where all directions of motion are immediately accessible.

The classical study of geometry is based on the properties of Euclidean space:

manifolds, Riemannian metrics, and derivatives are all designed to harness the

metric and algebraic structure of Rn. For non-holonomic geometry, it is the

Heisenberg group Φn and more generally the Carnot groups that provide the

intuition and infinitesimal structure. The first Heisenberg group Φ1 is defined

(via geometric coordinates) as follows:

Definition 1.0.1. Φ1 is the space R3 = {(x, y, t)} with group structure

(x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(xy′ − xy′)) .

Figure 1.1: Left translates of Altgeld Hall in Φ1, with left multiplication acting
by shears isometric with respect to the metric dsR. The plane at the base of
the building is spanned by the vector fields X and Y .

One gives Φ1 the sub-Riemannian (or non-holonomic) metric dsR by declar-
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ing the left-invariant vector fields

X =
∂

∂x
− 2y

∂

∂t
, Y =

∂

∂y
+ 2x

∂

∂t

orthonormal, and computing distance along curves as in Riemannian geometry.

It follows from the relation [X,Y ] = 4 ∂
∂t that, in fact, any two points can be

connected by a curve of finite length.

We now describe the structure and main ideas of the thesis. A recurring

theme is the generalization of concepts based on Euclidean geometry to similar

ones based on Heisenberg geometry.

Remark 1.0.2. The notation Φn for the Heisenberg group is non-standard.

However, the standard symbol H is competed for by hyperbolic spaces, horo-

spheres, Hausdorff dimension, and the horizontal distribution in sub-Riemannian

spaces. On the other hand, the symbol Φ is evocative of the model C×R of the

Heisenberg group.

1.1 Number theory and dynamics

One represents points in R by exploiting the existence of a dilation δr(x) = rx

and the integer lattice Z ⊂ R with fundamental domain [0, 1). For a number x ∈
[0, 1), the first base-10 digit of x is defined by the property 10x−a1 ∈ [0, 1), and

further digits are defined by iterating the digit-removing map x 7→ 10x−b10xc.
An alternate common representation of x ∈ [0, 1) is given by working with

the condition 1/x − a1 ∈ [0, 1) and the digit-removing map x 7→ 1/x − b1/xc.
The corresponding digits ai are known as continued fraction digits of x and

satisfy the relation

x = lim
k→∞

1

a1 + 1

a2+
. . . 1

ak

Both representations are well-studied in number theory, with strong connec-

tions to dynamical systems and hyperbolic geometry. For example, one shows

that the digit-removing maps are ergodic, and that (generically) the digit se-

quences of all real numbers are equally random.

In [31], Joseph Vandehey and I explored analogous notions for the Heisenberg

group, showing that base-b expansions make sense in Φn for all n, and that

continued fractions make sense for n = 1. Replacing the integer lattices Z with

the Heisenberg integer lattices ΦnZ with a special fundamental domain KS,b, we

defined base-b expansions via the property −a1∗δb(p) ∈ KS,b and digit-removing

mapping p 7→ −bδb(p)c ∗ δb(p). Likewise, the continued fraction digits satisfy

the property −a1 ∗ ι(p) ∈ K, with digit-removing mapping p 7→ −[ι(p)] ∗ ι(p),

2



with the Korányi inversion ι given by:

ι(z, t) =

(
−z

|z|2 + it
,
−t

|z|4 + t2

)
.

We show that in both cases, the digits can be recombined to produce the original

point p. For the base-b case, we further established ergodicity of the digit-

removing mapping, while for the continued fractions proving ergodicity appears

to be quite complicated.

The results of [31] are summarized in Chapter 2, which also provides a

description of the isometries and conformal mappings of Φn.

1.2 Quasi-conformal analysis and branched

covers

In complex analysis of one variable, one is concerned with conformal mappings,

i.e. angle-preserving smooth mappings. In higher dimensions, conformal map-

pings become rigid, and one generalizes to quasi-conformal mappings, defined

as homeomorphisms that send infinitesimal balls to ellipsoids of bounded eccen-

tricity. A classical result based on the theorems of Rademacher and Stepanov

then states that quasi-conformal mappings in Rn are almost everywhere differen-

tiable. Because Riemannian manifolds are locally diffeomorphic to Rn, the same

differentiability result holds for quasi-conformal mappings between Riemannian

manifolds.

In part due to connections to group theory (see §1.3), one is interested in

quasi-conformal groups, i.e. groups of quasi-conformal mappings whose dilata-

tion (the maximal stretching of infinitesimal balls) is bounded by the same con-

stant for all group elements. In [46], Tukia showed that every quasi-conformal

group Γ leaves invariant a measurable conformal structure. That is, while it need

not be conjugate to a group of conformal transformations, there is a notion of

angle based on which Γ seems conformal.

More recently, interest has appeared in the dynamics of analogous quasi-

regular mappings, which are branched covers with a dilatation bound, such as

the composition of the maps f1(z) = z2 and f2(x, y) = (2x, y). In particu-

lar, Iwaniec–Martin showed in [21] that every abelian uniformly quasi-regular

(UQR) semigroup admits an invariant measurable conformal structure.

Katrin Fässler, Kirsi Peltonen and I explored the dynamics of quasi-regular

mappings of sub-Riemannian manifolds in [13]. Specifically, we showed that

every lens space with its natural sub-Riemannian metric admits a non-trivial

UQR mapping (that is, a non-homeomorphic mapping that generates a UQR

semigroup), and that more generally any UQR mapping admits an invariant

measurable conformal structure. The existence result is based on the conformal

trap method of [13] and the quasi-conformal flow techniques of Libermann and
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Korányi–Reimann, while the invariant structure is found by generalizing Tukia’s

result via Margulis–Mostow derivatives and Gromov–Hausdorff tangent spaces.

An exposition of the results of [13] is provided in Chapter 3.

1.3 Hyperbolic geometry

The hyperbolic plane H1
C is constructed by giving the upper half-space {(x, y) :

y > 0} the Riemannian metric with line element

ds2 =
dx2 + dy2

y2
.

The hyperbolic plane has an extensive geometric theory, with a key role played

by the boundary ∂H1
C = {(x, y) : y = 0}. Despite the extrinsic appearance

of ∂H1
C in a specific model of H1

C, it can be defined intrinsically using geodesics

of H1
C, and many interesting mappings of H1

C (specifically, the quasi-isometries,

whose distortion is controlled by a linear function) extend to continuous map-

pings of ∂H1
C.

Higher-dimensional analogues of H1
C come in four varieties: the real hyper-

bolic spaces HnR (with H2
R isometric to H1

C), the complex hyperbolic spaces HnC,

the quaternionic hyperbolic spaces, and the octnionic hyperbolic plane. To-

gether, these are known as the non-compact rank-one symmetric spaces. We

focus on HnC, for n ≥ 2.

As with H1
C, the higher-dimensional spaces HnC can be described using upper

half-space models Φn−1×R+, with the Heisenberg group Φn−1×{0} now play-

ing the role of the boundary. In particular, if f : Φn−1 → Φn−1 is a homothety

with dilation factor r, then F (p, s) = (f(p), rs) is an isometry of HnC in the horo-

spherical model. Through the theory of Gromov hyperbolic spaces, one sees that

quasi-isometries of HnC induce quasi-conformal mappings of Φn−1 and further-

more every quasi-conformal mapping of Φn−1 arises in this fashion. We follow

Tukia–Väisälä [49] to show in [30] that, in fact, every quasi-conformal mapping

of Φn−1 is the boundary of a bi-Lipschitz mapping (i.e. one with multiplicative

distortion of distances).

Switching directions, we then focus on the lattices Γ in the isometry group

of HnC. It is a classical result that if Γ\HnC is compact, then any quasi-isometric

embedding f : Γ ↪→ Γ is, in fact, a quasi-isometry. Ilya Kapovich and I proved in

[22] the same result for non-uniform lattices in rank-one semi-simple Lie groups.

Chapter 4 provides a description of the non-compact rank one symmetric

spaces, their lattices and mapping theory, as well as the results of [30] and [22].

4



Chapter 2

Heisenberg group

The most common geometric model of the Heisenberg group Φn is given by

identifying Φn with Cn × R, with the group law h ∗ h′ given by

(z, t) ∗ (z′, t′) = (z + z′, t+ t′ + 2Im〈z, z′〉),

where 〈z, z′〉 is the standard Hermitian inner product in Cn. Alternately, one

gives Cn real coordinates and writes

(xi, yi, t) ∗ (x′i, y
′
i, t
′) =

(
xi + x′i, yi + y′i, t+ t′ + 2

∑
(xiy

′
i − x′iyi)

)
.

The group’s center {0}×R of Φn acts by a Euclidean translation, while left

translation by other elements causes a shearing of the space (cf. Figure 1.1):

(0, 1) ∗ (z, t) = (z, t+ 1)

(1, 0) ∗ (z, t) = (z + 1, t− 2y)

Thus, while we will need a replacement for the Euclidean distance, the usual

Lebesgue measure provides a natural notion of volume.

In this chapter, we begin by investigating the essential group-theoretic and

number-theoretic properties of Φn. This will lead us to a description of several

metrics on Φn and a study of the conformal, and eventually quasi-conformal,

mappings of the space. The number-theoretic results and dynamical-systems

considerations in this chapter are based on joint work with Joseph Vandehey

[31].

2.1 Lattices and base-b expansions

Consider the subgroup ΦnZ of points in Φn all of whose coordinates in the geo-

metric model are integers.

Lemma 2.1.1. The unit cube KC = [0, 1]2n+1 is a fundamental region for ΦnZ.

That is, the translates ΦnZ ∗KC of the cube tile all of Φn while overlapping only

along the faces.

Proof. Consider a point in Φn with coordinates (z, t). Pick z′ ∈ Z[i]n such that
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−z′ + z ∈ [0, 1]2n and therefore (−z′, 0) ∗ (z, t) ∈ [0, 1]2n × R. A further choice

of t′ ∈ Z ensures that (−z′,−t′) ∗ (z, t) ∈ KC . We thus have that (z′, t′) ∈ ΦnZ
and p ∈ (z′, t′) ∗KC . Likewise, only points on the boundary of KC are related

by elements of ΦnZ.

We thus have that ΦnZ is a uniform lattice in Φn, that is, a discrete subgroup

with a compact fundamental domain. The quotient ΦnZ\Φn is an example of a

nilmanifold. While the quotient may resemble a torus, its fundamental group

is not abelian. Rather, we have (in the standard group-theoretic multiplicative

notation):

π1(ΦnZ\Φn) = ΦnZ
∼= 〈ai, bi, c : [ai, bi] = c4 for each i; others commute〉.

Remark 2.1.2. The generators are given by translates by xi, yi, and t. The

relations are easily verified, and are shown to be sufficient by putting every

element of ΦnZ in a normal form. Note also the factor of 4 in the presentation,

caused by our convention on the group law; adjusting the group law to fix this

causes the 4 to reappear elsewhere.

We start by finding a way to represent elements of Φn in an inherent fashion,

without referring extensively to the geometric representation. We first mimic

the base-b expansions of real numbers, and will develop a continued-fraction

representation below. We need the following two tools:

Definition 2.1.3. Let K be a fundamental region for a group Γ acting on some

space X. We have an associated “nearest integer” map [·] : X → Γ defined by

the property that p ∈ [p] ∗K. Like the usual nearest integer map, [·] is uniquely

defined on the interiors of the tiles Γ ·K.

Definition 2.1.4. For each r > 0, define:

δr(p) = δr(z, t) = (rz, r2t).

The map δr : Φn → Φn is a group isomorphism. For r ∈ N, δr : ΦnZ → ΦnZ is

an injective homomorphism. Based on these properties, we will think of δr as

a dilation map (we will later introduce an appropriate metric for which this is

true).

Definition 2.1.5 (base-b expansion). Fix a positive integer b ≥ 2 and suppose

that K is a fundamental domain for ΦnZ satisfying:

1. 0 ∈ K,

2. δbK = ∪d∈Dd ∗K for some finite digit set D ⊂ ΦnZ.

Let [·] be the nearest-integer map associated to K. Define T : K → K be the

map T : p 7→ [δbp]
−1 ∗ δbp, and ai := [T i−1p]. We refer to {ai} as the base-b

digits of p. We write p = 0.a1a2a3 . . ., for now without justification.
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Remark 2.1.6. We are paralleling the familiar base-10 expansions of real

numbers. In that case, we have K = [0, 1], x 7→ [x] the floor function, and

T (x) = −[10x] + 10x. The digits ai are then exactly the base-10 digits of the

number x ∈ [0, 1]. In base-10 notation, the map T simply removes the first digit

of x.

The cube KC does not satisfy the assumptions of Definition 2.1.5. However,

the following theorem of Strichartz states that the desired fundamental domain

does exist (see Figure 2.1):

Theorem 2.1.7 (Strichartz [44]). For each b > 0, there exists a fundamental

domain KS = KS,b for ΦnZ satisfying the conditions of Definition 2.1.5.

Figure 2.1: The self-similar Strichartz tile KS,2 from Theorem 2.1.7.

Note that if p = 0.a1a2a3 · · · , then δb−1p = 0.0a1a2a3 · · · . This property

allows us to define the expansion for points outside of K. Namely,

Definition 2.1.8. Fix b,K as above. Suppose p ∈ Φn and k is the small-

est integer so that δ−kb p ∈ K, and δ−kb p = 0.a1a2 · · · . Then we write p =

a1a2 . . . ak.ak+1ak+2 · · · .

Abusing notation, as one does with decimal expansions in R, we define:

Definition 2.1.9. Let N ∈ N and {ai}∞i=−N elements of Φn(Z). Define:

a−Na−N+1 · · · a0.a1a2 · · · := lim
n→∞

δNb a−N ∗ δN−1
b a−N+1 ∗ · · · ∗ δN−nb a−N+n,

should this limit exist. Note that this is completely analogous to the meaning

of base-b numbers in R.

Theorem 2.1.10 (Lukyanenko–Vandehey [31]). Let N ∈ N and {ai}∞i=−N a

bounded sequence of elements of Φn(Z). Then the limit a−Na−N+1 · · · a0.a1a2 · · ·
exists. Furthermore, if {ai} are the base-b digits of a point p, then we indeed

7



have that

a−Na−N+1 · · · a0.a1a2 · · · = p

in the sense of Definition 2.1.9.

To prove Theorem 2.1.10, it is convenient to provide Φn with a left-invariant

metric for which δr is a dilation by factor r.

Definition 2.1.11. The gauge (or Cygan or Korányi) metric dg on Φn is de-

fined, using geometric coordinates, as:

‖(z, t)‖4 = |z|4 + t2 dg(p, q) =
∥∥p−1 ∗ q

∥∥
It is straightforward to show that dg is a metric, is left-invariant, and induces

the expected Euclidean topology on Φn.

Proof of Theorem 2.1.10. By definition,

a−Na−N+1 · · · a0.a1a2 · · · = lim
n→∞

δNb a−N ∗ δN−1
b a−N+1 ∗ · · · ∗ δ−N+n

b a−N+n,

if it exists. Now, the sequence of partial sums

{δNb a−N ∗ δN−1
b a−N+1 ∗ · · · ∗ δN−nb a−N+n}∞n=0

is Cauchy because δ−1
b is distance-decreasing and the digits are bounded, hence

convergent. Indeed, by the triangle inequality we have for each n < m:

dg(δ
N
b a−N ∗ δN−1

b a−N+1 ∗ · · · ∗ δN−nb a−N+n,

δNb a−N ∗ δN−1
b a−N+1 ∗ · · · ∗ δN−mb a−N+m)

=
∥∥δN−n−1
b a−N+n+1 ∗ · · · ∗ δN−mb a−N+m

∥∥
≤
∥∥δN−n−1
b a−N+n+1

∥∥+ · · ·+
∥∥δN−mb a−N+m

∥∥
= bN−n−1 ‖a−N+n+1‖+ · · ·+ bN−m ‖a−N+m‖

We assumed that the {ai} are bounded. In particular, their norm is bounded

by some A ≥ 0, and the above sum is bounded above by AbN−n−1 1
1−1/b .

The second half of the theorem is given by an analogous estimate.

We finish the section on base-b expansions with an analogue of a classic

number theory result.

Definition 2.1.12. Let Db be the set of possible base-b digits in Φn, consisting

of b2n+2 elements. An infinite sequence in the elements of Db is normal if each

digit appears equally often, and furthermore, for each m > 1, all strings of

length m appear equally often in the sequence.

A point p ∈ Φn is normal in base b if its expansion is normal with respect

to Db. The point is normal if it is normal with respect to any base b.
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The next result follows from immediately from standard ergodic theory,

namely Theorem 2.6.3:

Theorem 2.1.13. Let T : KS → KS be given by T : p 7→ [δbp]
−1δbp. Then T

is ergodic with respect to Lebesgue measure on KS.

Corollary 2.1.14. Almost every point of Φn is normal.

Proof. Fix b ≥ 2 and m ≥ 1. The self-similarity of KS implies that the points of

KS that start with some sequence a1 · · · am are represented by a sub-tile of KS

with the same volume as a sub-tile associated to any other starting sequence of

the same length. The Birkhoff Ergodic Theorem then guarantees that the orbit

of a generic point in KS visits each sub-tile equally often. That is, the subset

Nb,m of KS consisting of (b,m)-normal points has full measure. Since there are

countably many choices of b and m, we conclude that the set of normal points

N = ∩b,mNb,m is of full measure.

Example 2.1.15. Consider points in Φ1 expressed in base-2. There are 16

possible digits: (x, y, t) with x = 0, 1, y = 0, 1, t = 0, 1, 2, 3. We may number

these in base 16 as 0, 1, 2, 3, . . . , 9, A,B,C,D,E, F . It is well-known that the

Champernowne sequence 0123456789ABCDEF101112131415161718191A · · · is

normal. Thus, the corresponding point in Φ1 is normal base-2. Similarly, a base-

b normal point can be constructed in any Φn for each base b.

Question 2.1.16. Construct a point that is normal (with respect to all b).

Question 2.1.17. Suppose p is a normal point in Φn. Are the geometric co-

ordinates of p normal (as real numbers)? Conversely, is a point with normal

coordinates normal?

Question 2.1.18. Show that a point in Φn has an eventually periodic expansion

if and only if its coordinates are rational. What is the relationship between the

period of the expansion and the coordinates?

2.2 Metrics on the Heisenberg group

Definition 2.1.11 provides a convenient metric on Φn, but is it a natural metric

to study? Indeed, it seems far more natural to use a Riemannian metric:

Definition 2.2.1. Consider Φn in its geometric model, and consider the stan-

dard inner product at the origin. Extend it via left multiplication to a left-

invariant metric tensor g on all of Φn. The standard Riemannian metric dRiem

on Φn is the associated path metric.

On the small scale, the Riemannian Heisenberg group is essentially Eu-

clidean. We will now show that the large-scale geometry of (Φn, dRiem) is closer

to that of the gauge metric. This will allow us to focus on the metric dg, which
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is both easier to compute and equipped with dilations δr, which already arize

from the group structure of Φn. To facilitate the transition, we define another

metric on Φn:

Definition 2.2.2. Let α be the left-invariant differential one-form on Φn defined

by the property (in geometric coordinates) that α|0 = dt. Set HΦn = Ker α, a

horizontal hyperplane bundle. Lastly, consider the restriction gsR = g|HΦn of

the Riemannian inner product g to the horizontal bundle.

A path in Φn is said to be horizontal or admissible if its velocity is almost

everywhere in HΦn, so that gsR can be used to calculate the length of the

path. The sub-Riemannian (or Carnot–Carathéodory) distance dsR between

two points of Φn is the infimal length of admissible paths between the two

points.

The fact that (Φn, dsR) is a metric space and homeomorphic to R2n+1 is

established by the following theorem initially studied in the context of PDEs

(note that an analogous theorem is immediate for the gauge metric):

Theorem 2.2.3 (Ball–Box Theorem [5]). Let B(0, r) = {p ∈ Φn : dsR(0, p) ≤
r} and Box = [−1, 1]2n+1 ⊂ Φn. Then there exist r1, r2 > 0 such that

B(0, r1) ⊂ Box ⊂ B(0, r2).

Figure 2.2: The Ball-Box Theorem 2.2.3 with r1 = 1, r2 = 3.

The following proposition relates the three metrics (see below for the termi-

nology):

Proposition 2.2.4. (Φn, dg) is equivalent to (Φn, dsR), which is in turn iso-

metric to the asymptotic cone of (Φn, dRiem).

Definition 2.2.5. Recall that a function f : X → Y between two metric spaces

is an (L,C)-quasi-isometric embedding if one has

−C + L−1 |x− x′| ≤ |fx− fx′| ≤ L |x− x′|+ C

for all points x, x′ ∈ X. It is a quasi-isometry if furthermore the C-neighborhood

of f(X) is all of Y . If we have C = 0, then f is a bi-Lipschitz embedding, or a

bi-Lipschitz homeomorphism, respectively. We say that two metrics on a fixed

space are equivalent if the identity map between them is bi-Lipschitz.

10



The first part of Proposition 2.2.4 is therefore formalized as:

Lemma 2.2.6. The identity map id : (Φn, dg) → (Φn, dsR) is a bi-Lipschitz

equivalence.

Proof. Let p, q ∈ Φn. We would like to compare dg(p, q) to dsR(p, q). Because

both metrics are left-invariant, we may assume that q = 0. Furthermore, both

metrics rescale in the same way via the dilation δr, so we may assume dsR(p, 0) =

1. It remains to provide upper and lower bounds for the gauge norm of points p

in the sub-Riemannian unit sphere. These follow immediately from the Ball-Box

Theorem 2.2.3 by comparing the box with a gauge sphere.

Before defining asymptotic cones (for the statement of Proposition 2.2.4),

we first define the notion of asymptotic isometries.

Definition 2.2.7. Let (X∞, d∞) a be a metric space, and (Xi, di) a family of

compact metric spaces with uniform diameter. A sequence of maps fi : Xi →
X∞ is an asymptotically isometric (embedding) if each fi is an (Li, Ci)-quasi-

isometric (embedding) with

lim
i→∞

Li = 1, lim
i→∞

Ci = 0.

In the spirit of many analytic results requiring uniform convergence on com-

pacts, we extend the Definition 2.2.7 as follows:

Definition 2.2.8. Let (X∞, d∞) be a metric space, and (Xi, di) a family of

locally compact metric spaces. A sequence of maps fi : Xi → X∞ is an asymp-

totically isometric (embedding) if, for any r > 0 and collection of points xi ∈ Xi,

the restriction of each fi to the ball B(xi, r) is an (Li, Ci)-quasi-isometric (em-

bedding) with

lim
i→∞

Li = 1, lim
i→∞

Ci = 0.

Remark 2.2.9. For Definition 2.2.8, one usually works with pointed metric

spaces. However, we are interested in homogeneous metric spaces, so our defin-

tion is equivalent in this context.

We can now say precisely what it means for one space to be a large-scale

model of another.

Definition 2.2.10. Let (X, d) and (X∞, d∞) be two locally compact metric

spaces. Fix a sequence ri > 0 going to infinity, and set (Xi, di) := (X, r−1
i d), so

that the identity map from X to Xi is a similarity with dilation ri. One says

that X∞ is the asymptotic cone of X if there exists an asymptotically isometric

sequence of maps fi : Xi → X.

A priori, the asymptotic cone is guaranteed neither to exist nor to be unique.

Indeed, some spaces have multiple asymptotic cones, depending on the choice

of rescaling sequence. In our case, this will not be the case:

11



Proposition 2.2.11 (Pansu [37]). The space (Φn, dsR) is the unique (up to

isometry) asymptotic cone for (Φn, dRiem).

The proof of Proposition 2.2.11 uses Riemannian “penalty” metrics on Φn:

Definition 2.2.12. Let s > 0. The left-invariant Riemannian penalty metric ds

with parameter s is the defined by a left-invariant metric tensor gs characterized

as follows. At the origin of Φn in geometric coordinates Cn × R, gs agrees

with gsR and gRiem along the complex direction; the real direction is declared

orthogonal to the complex direction, with the vector (0, 1) assigned length s.

Remark 2.2.13. In terms of tensors, we have g1 = gRiem and limr→∞ gr = gsR.

Recall now that given a metric space (X, d) and r > 0, the space (X, rd)

consists of the same points as (X, d), but with all distances rescaled by factor

r.

Lemma 2.2.14. For each r > 0, the rescaled metric space (Φn, rdRiem) is

isometric to (Φn, dr).

Proof. Note that (Φn, rdRiem) is still Riemannian, defined by the metric tensor

rg. Since δr is a linear map, it is its own derivative, and have that (δ−1
r )∗(rg) =

gr. Thus, δ−1
r : (Φn, rdRiem)→ (Φn, dr) is an isometry.

To complete Proposition 2.2.11, we invoke the following lemma:

Lemma 2.2.15 ([8]). The geodesics of (Φn, dsR) are limits of geodesics in

(Φn, dr). In particular, one has that for any two points p, q ∈ Φn,

dsR(p, q) = lim
r→∞

dr(p, q),

uniformly on compacts.

Remark 2.2.16. Solving the geodesic equation for the penalty metrics allows

us to draw geodesics and spheres in (Φn, dsR), as in Figure 2.2.

2.3 Path metrics

We now explore a closer connection between the metrics dsR and dg. We start

by recalling some standard metric-space definitions.

Definition 2.3.1. Let (X, d) be a metric space. It is said to be geodesic if for

any x, x′ ∈ X there exists an isometric embedding of the interval [0, d(x, x′)]

that starts at x and ends in x′.

Definition 2.3.2. Let (X, d) be a metric space (geodesic or not). Let γ :

[0, a]→ X be a path. The length of γ is given by

`(γ) := sup

N∑
i=1

d(γ(ai−1), γ(ai)),

12



where the supremum is taken over all partitions {ai} of the interval [0, a]. A

path is rectifiable if it has finite length. A metric spaces is rectifiably connected

if every pair of points is joined by a rectifiable curve.

Definition 2.3.3. Let (X, d) be a rectifiably connected metric space. The path

metric associated to d is given by

dpath(x, x′) := inf `(γ),

where the infimum is taken over all rectifiable paths γ joining x and x′.

The metric axioms for the associated path metric follow immediately from

those for the original metric. Furthermore, a metric space (X, d) is geodesic if

and only if the path metric associated to d is d itself.

Lemma 2.3.4 ([25]). Let p ∈ Φn. We then have, for q approaching p along

horizontal curves:

lim
q→p

dg(p, q)

dsR(p, q)
= 1.

Combining Lemma 2.3.4 with the rotational symmetry of Φn and the fact

that projection onto the x1-axis is 1-Lipschitz in both metrics gives:

Corollary 2.3.5. The sub-Riemannian metric dsR is the path metric associated

to the gauge metric dg.

2.4 Isometries and conformal mappings

The classification of the isometries of Φn seems to be due to Ursula Hamenstädt

in 1990 [17]. The key tool is a generalization of the Myers–Steenrod Theo-

rem [36], which states that isometries of Riemannian manifolds are smooth.

Hamenstädt proved the corresponding fact for manifolds whose geodesics sat-

isfy an analogue of the geodesic equation. A generalization to all regular sub-

Riemannian manifolds (including ones with abnormal geodesics) was only re-

cently provided by Capogna–LeDonne [9].

Proposition 2.4.1 (Hamenstädt [17]). Let f : Φn → Φn be an isometry with

respect to dg, dsR, or dRiem. Then f is the composition of the following maps:

1. Left translations `p : q 7→ p ∗ q, for some p,

2. Linear transformations of the form A⊗ 1, for some A ∈ U(n),

3. The map (z, t) 7→ (z,−t).

where the splitting refers to geometric coordinates on Φn and U(n) is the group

of unitary matrices.
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Remark 2.4.2. Hamenstädt’s result states that an origin-preserving isometry

of a Carnot group (e.g. Φn) with its sub-Riemannian metric must be a Lie

group isomorphism preserving the horizontal distribution. Such isomorphisms

are generated by the maps A ⊗ det(A) with A a symplectic matrix. For dsR,

Proposition 2.4.1 follows by including the left translations and identifying the

distance-preserving Lie group isomorphisms of Φn. For the gauge metric dg, the

result follows from Proposition 2.3.5.

Corollary 2.4.3. The homotheties of Φn are generated by the mappings in

Proposition 2.4.1 and the maps δr.

We would now like to identify the conformal maps of Φn, as their study in

Euclidean space leads to topics in both analysis and geometry.

Definition 2.4.4. Let f : X → Y be a homeomorphism between metric spaces.

We say that f is conformal if at every point x ∈ X the following limit exists:

lim
r→0

sup

{
|fx− fx′|
|x− x′|

: |x− x′| ≤ r
}

where |· − ·| denotes the distance in the appropriate space.

Example 2.4.5. Suppose X and Y are Riemannian manifolds with correspond-

ing metric tensors gX and gY , and f : X → Y is a homeomorphism. Then f is

conformal if and only if it is smooth and one has f∗gY = λgX for a smoothly-

varying non-vanishing λ on X (see [14] and [28]).

Recall that for domains in the plane, one has an extensive theory of conformal

mappings. However, in larger spaces the theory is more constrained:

Theorem 2.4.6 (Liouville theorem in Rn [15]). Let X,Y be domains in Rn, for

n ≥ 3, or the full plane R2. Any conformal map f : X → Y is the restriction

of a Möbius transformation of Rn ∪ {∞}.

Definition 2.4.7. The Möbius transformations of Rn ∪ {∞} are generated by

homotheties of Rn and the map ι(x) = −x/ ‖x‖2, which exchanges 0 and ∞.

Returning to the Heisenberg group, note that we have a notion of a conformal

map with respect to both the sub-Riemannian and gauge metrics. The two

classes of mappings coincide (which follows from a more general characterization

of quasi -conformal mappings, §3.4):

Lemma 2.4.8 (Korányi–Reimann [25]). Let U, V be domains in Φn. A mapping

f : U → V is conformal with respect to dg if and only if it is conformal with

respect to dsR.

Analogously to classical Möbius transformations of Rn, we can define Möbius

transformations for Φn (see [25]):

Definition 2.4.9. The Möbius transformations of Rn ∪ {∞} are generated by:
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1. Left translations `p : q 7→ p ∗ q, for p ∈ Φn,

2. Rotations A⊗ 1, for A ∈ U(n),

3. Dilations δr, for r > 0,

4. The reflection (z, t) 7→ (z,−t),

5. The Korányi inversion

ι(z, t) =

(
−z

|z|2 + it
,
−t

|z|4 + t2

)
(2.4.1)

Remark 2.4.10. The Korányi inversion has a simpler expression if we ex-

tend some previous notation. Recall that we have ‖(z, t)‖4 = |z|4 + t2. Write

‖(z, t)‖2C := |z|2 + it. Furthermore, allow δr to accept r ∈ C by writing

δr(z, t) = (rz, |r|2 t). We can then write

ι(z, t) = −δ−1
‖(z,t)‖2C

(z, t).

While this is not standard notation, it can be useful. We will link the Korányi

inversion to an antipodal map on the sphere in §2.7.

Theorem 2.4.11 (Liouville-type theorem in Φn [24, 7]). Let f : U → V be

a conformal mapping between domains in Φn (for n ≥ 1), with respect to the

sub-Riemannian or gauge metric. Then f is the restriction of a Möbius trans-

formation.

Remark 2.4.12. Note that the Korányi inversion is not conformal with respect

to the Riemannian metric on Φn, even though it is conformal from the sub-

Riemannian and gauge-metric perspective.

2.5 Continued fractions

In §2.1 we discussed an intrinsic notion of base-b expansions on Φn. The classi-

fication of conformal mappings on Φn now provides us with the tools to define

a continued fraction expansion for points in Φ1.

We start with a critical observation concerning the Korányi inversion and

the gauge metric dg (inversion in Rn satisfies the same relation with respect to

the Euclidean metric) .

Lemma 2.5.1. The Korányi inversion ι satisfies, for all p, q ∈ Φn:

dg(ιp, ιq) =
dg(p, q)

‖p‖ ‖q‖
.

In particular, ι preserves the gauge unit sphere.
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Recall that a classical continued fraction represents a number x ∈ [0, 1] as a

limit of fractions:

x = lim
k→∞

1

a1 + 1

a2+
. . . 1

ak

Interpreting addition as left translation and inversion as ι, we define the

analogous concept in Φn:

Definition 2.5.2 (Heisenberg continued fraction). Let {γi} ⊂ ΦnZ be a sequence

of integer Heisenberg elements. The associated continued fraction is

K{γi} := lim
k→∞

ιγ1ιγ2 · · · ιγk,

if this limit exists. Note that for reading convenience, we have dropped paren-

theses and multiplication sign.

Theorem 2.5.3 (Lukyanenko–Vandehey [31]). Suppose {γi} is a sequence of

elements of ΦnZ with ‖γi‖ ≥ 2 for each i. Then K{γi} exists. Furthermore, the

bound on the elements depends only on n.

Proof. It is hard to track the sequence of partial fractions γ1ιγ2 · · · ιγk. Instead,

we consider the region where each partial fraction might be and show that this

limits to a single point.

Let B be the closed unit ball in the gauge metric (of diameter 2). We have

0 ∈ B, and if ‖γ1‖ is sufficiently large (say, bigger than 2), all points in γ1B are

at least some fixed distance C from the origin.

By Lemma 2.5.1, ιγ1B is a set of diameter at most 2/C2 and is contained in

B. Likewise, ιγ1ιγ2B has diameter at most 2/C4; and furthermore ιγ1ιγ2B ⊂
ιγ1B ⊂ B. Proceeding recursively, we obtain a sequence of compact nested sets

with uniformly shrinking diameter. Their intersection is the point K{γi}.

We now reverse the continued-fraction algorithm, obtaining a sequence of

digits that converges to a given point. Note that not all of the resulting con-

verging continued fractions satisfy the assumptions of Theorem 2.5.3.

Definition 2.5.4 (Admissible fundamental domain). A fundamental domain

K for Φ1
Z is admissible if it satisfies 0 ∈ K, is properly contained in the unit

ball with respect to the gauge metric, and tiles Φ1 without overlap.

Definition 2.5.5 (Continued fraction expansion). Let K be an admissible fun-

damental domain and [·] the associated nearest-integer mapping. The Gauss

map associated to K is given by T (p) = [ιp]−1 ∗ ιp. The continued fraction

digits of a point p ∈ K are the Heisenberg-integer elements that appear under

iteration of T . That is, each γi ∈ Φ1
Z satisfies T ip = γ−1

i ∗ ιT i−1p. We write

CF (p) = {γi}. The continued fraction contains finitely many steps if and only

if T kp = 0 for some k.
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A variant on the Euclidean algorithm allows us to prove the following result

(here ΦnQ is the set of points with rational coordinates in the geometric model):

Theorem 2.5.6 (Lukyanenko–Vandehey [31]). A point p ∈ Φ1 admits a finite

continued fraction expansion if and only if p ∈ Φ1
Q.

We will provide a proof of Theorem 2.5.6 in §2.7. The proof of the main

theorem 2.5.7 follows the same framework but is more technical, see [31].

Theorem 2.5.7 (Lukyanenko–Vandehey [31]). Let {γi} be the digits of a point

p ∈ K, with respect to an admissible fundamental domain K in Φ1. Then K{γi}
exists and equals p.

Remark 2.5.8. The dimension restriction in the above discussion is critical,

as admissible fundamental domains cease to exist in higher dimension. This is

true even in the analogous Euclidean case where any fundamental domain for

the Zn action has volume 1 while the unit ball has volume smaller than 1 in

dimensions above 13.

2.6 Conformal dynamics

The study of continued fractions in [31] led to a question in dynamical systems,

which we now describe. Recall from §2.5 that the standard continued fraction

on R is defined by means of the Gauss map T : [0, 1] → [0, 1] given by T (x) =

1/x − b1/xc. It is a classical result that the Gauss map leaves invariant the

Gauss measure

µ(A) =
1

log 2

∫
A

1

1 + z
dx

Here, a measure µ is invariant under a transformation T if µ(f−1A) = µ(A) for

any measurable A; with f−1 denoting the full preimage of A under f .

Furthermore, it is classical that the Gauss map is ergodic with respect to µ.

That is, any T -invariant set has either measure zero or full measure.

Question 2.6.1 (Lukyanenko–Vandehey [31]). Does the Heisenberg Gauss map

admit an invariant measure that is absolutely continuous with respect to Lebesgue

measure? If so, is it ergodic with respect to this measure?

The standard machinery for questions similar to Question 2.6.1 is the notion

of a fibered system (see Figure 2.3 for some intuition).

Definition 2.6.2 (Fibered System). Consider a topological space K and a

piecewise-continuous mapping T : K → K. Let D be a countable digit set,

and assume that T is continuous and invertible on sets C{w1} ⊂ K, for various

w1 ∈ D. As with continued fractions, one associates with each h ∈ K the

sequence {w1, . . .} of digits satisfying Tn−1h ∈ Cwn . A sequence arising in
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Figure 2.3: The cylinders for the complex Gauss map, given by the inversion
of the integer lattice in the unit circle. The large square has width 1 and is
centered at the origin.

this way (or any of its initial subsequences) is called admissible. To each finite

admissible sequence {w1, . . . , wn}, one associates the cylinder set C{w1,...,wn},

consisting of the points in K whose digit sequence starts with {w1, . . . , wn}.
The collection of cylinders is known as a fibered system.

Theorem 2.6.3 (See Theorems 4 and 8 in [42]). Let T give rise to a fibered

system over a set K, with digit set D. Let λ be some measure on K. Suppose

1. λ(K) = 1;

2. The system is Markov (that is, all the cylinders are full);

3. For any infinite admissible sequence w = {w1, w2, . . . } of digits from D,

we have

lim
n→∞

diamC{w1,w2,...,wn} = 0;

4. There is a constant C ≥ 1 such that for all finite admissible strings w of

length n, the Jacobian J(Tn) of Tn satisfies

supy∈TnCw Jy(Tn)

infy∈TnCw Jy(Tn)
≤ C.

Then T is ergodic and admits a unique finite invariant measure µ absolutely

continuous with respect to λ (furthermore, µ is equivalent to λ).

While Theorem 2.6.3 is strong enough to prove that many systems are er-

godic, including the base-b system of Theorem 2.1.13, it is not sufficient for

our case. Indeed, the cylinders of the Heisenberg Gauss map are not full, as is

illustrated in Figure 2.3 for the analogous continued-fraction dynamical system

in the complex plane. In this case, it is only known that the dynamical system

leaves invariant a measure equivalent to Lebesgue measure, but neither ergod-

icity nor a nice expression for the measure are available. For complex Gauss

maps starting with different fundamental domains, nothing seems to be known.
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Figure 2.4: Suspected invariant measure for the Heisenberg Gauss map for the
Dirichlet region KD (left) and cube KC (right). The radius of each sphere
represents the expect value of the measure.

Nonetheless, experimental results offer some hope. Figure 2.6 shows the

results of a computer simulation estimating the value of a putative invariant

measure at each point. These were computed as follows. A fundamental domain

K was chosen (in Figure 2.6 the Dirichlet domain is the region closer to 0 than

to any other integer point, in the gauge metric). Then a hopefully generic point

was chosen within K, and its forward orbit under T was computed. By the

Birkhoff Ergodic Theorem, the number of visits of the point to each subset of

K would correspond to the measure of the subset with respect to the invariant

measure. Thus, K was broken up into “bins” and visits to the bin were counted.

For each bin, a sphere is displayed, centered at the center of the bin, and with

radius corresponding to the number of visits to the bin.

2.7 Representing the Heisenberg group

We now return to the general theory of the Heisenberg group, setting up the

framework used to prove the results in §2.5. We start by representing the space

Φn as a subset S of Cn+1 ↪→ CPn+1. We then observe that certain matrices

in GL(n+ 2,C), acting by linear fractional transformations on CPn+1, restrict

to the closure S of S as conformal mappings of Φn. Furthermore, we see that

nearly all conformal mappings of Φn can be represented in this way, giving a

representation U : Conf(Φn)→ PGL(n+ 1,C).

Recall that complex projective space CPn+1 is the space of non-zero vectors

in Cn+2, with two vectors considered equivalent if they are multiples of each

other. Points in CPn+1 are written as (z0 : . . . : zn+1), with the coordinates

well-defined only up to rescaling. A standard coordinate patch is provided by

setting z0 = 1 and interpreting (1 : z1 : · · · : zn+1) as (z1, . . . , zn+1) ∈ Cn+1.

Linear transformations GL(n+ 2,C) of Cn+2 act by linear-fractional trans-

formations PGL(n+ 2,C) on CPn+1. Elements of PGL(n+ 2,C) are, likewise,

(n + 2) × (n + 2) complex matrices, considered equivalent if they differ by a
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scalar multiple.

Figure 2.5: A schematic of the Siegel region S defined by −2Re(zn+1) =

−(|z1|2+. . .+|zn|2). The blue (depth) axis represents the coordinates z1, . . . , zn,
while the red (width) and green (height) axes represent the real and complex
parts of zn+1, respectively.

Definition 2.7.1. The Siegel model S of Φn is the space (see Figure 2.5)

S = {(z1, . . . , zn+1) ∈ Cn+1 : −2Re(zn+1) = |z1|2 + . . .+ |zn|2}

We identify Φn with S via the correspondence ζ : (~z, t) 7→ (~z(1+i), |~z|2 +it),

and view S ⊂ Cn+1 ⊂ CPn+2 via the embedding (z1, . . . , zn+1) 7→ (1 : z1 : · · · :
zn+1).

We now begin to define the map U : Conf(Φn)→ PGL(n+ 2,C).

Definition 2.7.2. For each p ∈ Φn with geometric coordinates (~z, t), define

U(p) :=

 1 0 0

~z(1 + i) I 0

|~z|2 + it ~z†(1− i) 1

 ,

where ~z† denotes conjugate transpose of ~z and I is the n × n identity matrix.

The image of Φn under U is the (Siegel) unitary model of Φn.

It is easy to see that we have correctly represented left multiplication:

Lemma 2.7.3. For all p, q ∈ Φn we have U(p) · ζ(q) = ζ(p∗ q), where U(p) acts

by a linear fractional transformation on S ⊂ Cn+1 ⊂ CPn+1.

Definition 2.7.4. Recall from Theorem 2.4.11 that every conformal mapping

is a Möbius transformation (Definition 2.4.9). We extend U to the rotations,

dilations, and Korányi inversion.

U(δr) :=

 r−1 0 0

0 I 0

0 0 r

 U(A⊕ 1) :=

 1 0 0

0 A 0

0 0 1
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U(ι) :=

 0 0 −1

0 I 0

−1 0 0


Remark 2.7.5. Note that we are not defining U on the reflection (z, t) 7→
(z,−t), as it does not act on S by a linear fractional transformation (instead,

it acts by (z1, . . . , zn+1) 7→ (z1, . . . , zn+1)). We define Conf+(Φn) to be the

group of conformal mappings generated by left translation, rotation, dilation,

and Korányi inversion.

It is straightforward to check that we have correctly represented the confor-

mal maps in Conf+(Φn):

Lemma 2.7.6. Let p ∈ Φn and f ∈ Conf+(Φn). Then U(f) · ζ(p) = ζ(fp).

2.8 Unitary model

We now explain the notation U and the terminology “unitary model”.

Recall that a complex matrix is unitary if M†IM = I, or equivalently if M

preserves the standard Hermitian inner product 〈z, w〉 = z†w.

More generally, let J be a complex matrix satisfying J† = J . A matrix M is

unitary with respect to J if M†JM = J , or equivalently if M preserves the inner

product 〈z, w〉J = z†Jw. With the restriction J† = J , the matrix J must have

real eigenvalues. If J has a positive eigenvalues and b negative eigenvalues, it

has signature (a, b). It is well-known that up to a change of coordinates there is

a unique matrix of each signature, so that one can speak of the unitary groups

U(a, b) for each a, b. If a specific J is chosen, one can also speak of U(J).

Working in dimension n + 2, fix a matrix J . The inner product 〈·, ·〉 splits

Cn+2 into three types of vectors: those of positive square norm, negative square

norm, and zero square norm. The classification is invariant under rescaling, so

that one obtains positive, negative, and null points in CPn+1. The matrices

U(J) preserve the inner product and in particular the separation into positive,

negative, and null vectors. Projectivizing, we see that the group PU(J) pre-

serves the separation of CPn+1 into positive, negative, and null points.

Lemma 2.8.1. Fix the matrix J = J3 of signature (n, 1) given by

J3 =

 0 0 −1

0 I 0

−1 0 0

 .

The Siegel model S of the Heisenberg group consists entirely of null points with

respect to J3. Furthermore, U(Conf+(Φn)) ⊂ PU(J).

Proof. The first statement is part of the definition of S. The second is a quick

computation.
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The converse of Lemma 2.8.1 is almost true. In fact:

Lemma 2.8.2. The set of null points in CPn+1 is exactly the closure S =

S ∪ {(0 : 0 : · · · : 1)}. Furthermore, U : Conf+(Φn) → PU(J3) is a group

isomorphism.

2.9 Finite continued fractions and rational

points

We now sketch a proof of Theorem 2.5.6, which states that it is the rational

points in Φ1 that have finite continued fraction expansions. Our proof (joint

with Joseph Vandehey [31]) is motivated by the work of Falbel–Francsics–Lax–

Parker [12].

We will require the following lemma:

Lemma 2.9.1. The gauge metric on S is given by

‖h‖g = ‖(z1, . . . , zn+1)‖g =
√
|zn+1|.

The action of the unitary model on CPn preserves S, acting by isometries in

the gauge metric.

Now, there are three ways to interpret the phrase “rational point”. They

coincide:

Lemma 2.9.2. The following are equivalent characterizations of rational points

in Φn:

1. Points (xi, yi, t) in the geometric model with all coordinates rational.

2. Points of the form δrh, for r ∈ Q and h ∈ ΦnZ.

3. Points (z1, . . . , zn+1) in the Siegel model S with all coordinates in Q[i].

For the remainder of the section, we work with Φ1 in the Siegel model, and

fix an admissible fundamental domain K for Φ1
Z with respect to which continued

fractions are defined. We furthermore fix a point h = (u, v) ∈ K. Lifting to C3,

h is represented by the vector (1, u, v).

It is clear from Lemma 2.9.2 that if h is given by a finite continued fraction,

then it is rational (this is all the more clear if we allow r ∈ Q[i] for δr). We now

focus on the opposite implication. Namely, if {γi} are the digits of the continued

fraction expansion of (u, v), we would like to prove that for sufficiently high i

we have γi = 0.
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Definition 2.9.3. Given an element γ ∈ Φ1
Z with Siegel coordinates (α, β) ∈

(Z[i]× Z[i]) ∩ S, define

Aγ := U(ι)U(γ) =

 0 0 −1

0 1 0

−1 0 0


 1 0 0

α 1 0

β α 1



=

 −β −α −1

α 1 0

−1 0 0

 .

Lemma 2.9.4. In projective coordinates for the Siegel model, we have

K{γi}ni=1 = Aγ1 · · ·Aγn(1 : 0 : 0).

Proof. Abstractly, we have the definition K{γi}ni=1 = ιγ1 · · · ιγn. Using the

identity element 0 ∈ Φ, we may also write K{γi}ni=1 = ιγ1 · · · ιγn0. We now

apply Lemmas 2.7.6 and 2.8.2 to switch to U(ι)U(γ1) · · ·U(ι)U(γn) · (1 : 0 : · :

0).

The continued fraction algorithm terminates after i steps exactly if the ith

forward iterate hi = T ih is equal to zero. The idea of the proof is to now show

that the points hi can be written as fractions whose denominators are strictly

decreasing with i.

Recall that h is rational and write h =
(
r
q ,

p
q

)
, with q, r, p ∈ Z[i]. Because

h ∈ K, we have by Lemma 2.9.1 that |p/q| ≤ rad(K)2 < 1, where rad(K)

is the maximal gauge norm of the points in K, bounded by 1 for admissible

fundamental domains.

Consider the first forward iterate h1 = Th = γ−1
1 ιh as a vector in C3: q(1)

r(1)

p(1)

 := A−1
γ1

 q

r

p



=

 0 0 −1

0 1 α1

−1 −α1 −β1


 q

r

p

 =

 −p
r + α1p

−q − α1r − β1p


Thus, h1 is a rational point with planar Siegel coordinates h1 =

(
r(1)

q(1)
, p

(1)

q(1)

)
.

Furthermore, we have q(1) = −p, so that∣∣∣∣q(1)

q

∣∣∣∣ =

∣∣∣∣pq
∣∣∣∣ = ‖h‖2 < rad(K)2 < 1. (2.9.1)

Repeating this procedure recursively, we have rational coordinates hi =(
r(i)

q(i)
, p

(i)

q(i)

)
for each forward iterate hi, satisfying

∣∣q(i)
∣∣ =

∣∣p(i−1)
∣∣. Since hi ∈ K
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for each i, we obtain for each n:∣∣∣q(n)
∣∣∣ ≤ |q| (rad(K))2n (2.9.2)

For sufficiently large n, we conclude
∣∣q(n)

∣∣ < 1, which implies that q(n) = 0, but

that is only possible if hn−1 = 0 and CF (h) is, in fact, finite.

2.10 PU(n, 1) and the sub-Riemannian metric

In §2.7, we defined the Siegel model S of Φn as the set of points (z1, . . . , zn+1)

satisfying the condition−2Re(zn+1) = |z1|2+· · ·+|zn|2. In this model, the gauge

distance from a point to the origin simplified to ‖(z1 : · · · : zn+1)‖g =
√
|zn+1|.

The sub-Riemannian metric likewise admits a straightforward explanation.

We start by restricting the tangent space of S based on its embedding in

Cn+1. Note first that CPn+1 is a complex manifold, so that at any point p ∈ CPn

the tangent space TpCPn+1 is a complex vector space. We denote multiplication

by i =
√
−1 in this vector space by J (not to be confused with the matrices J

that give us Hermitian inner products).

Definition 2.10.1. Let S ⊂ CPn be a smooth submanifold of codimension 1.

The standard contact form α on S is given by α(p) = (J∗d~n(p))|TpS , where ~n(p)

is the normal vector to S at p. The complex tangent space TC,pS to S at p is

the space Ker α = (Cn(p))⊥.

Thus, the complex tangent space is a complex vector space consisting of

tangent vectors to S whose C-span is tangent to S. It is a reasonable subspace

to select, since any complex-analytic operation on S that ignores the normal

vector must also ignore its complex multiples.

Recall now that the sub-Riemannian metric on Φn was defined by selecting

a subbundle HΦn ⊂ TΦn.

Lemma 2.10.2. In the Siegel model, we have HΦn = TCS.

Proof. Via the unitary representation, Φn acts on S by conformal complex-

analytic transformations, so it suffices to check the claim at the origin. Recall

that the geometric model of Φn embeds into CPn+1 via (z, t) 7→ ((1 + i)z, |z|2 +

it) ⊂ Cn+1 ↪→ CPn+1. Thus, at the origin HΦn corresponds to the space

spanned by the first n complex coordinates. The space S is given by the equation

|z1|2 + . . . + |zn|2 − 2Rezn+1 = 0, and so has normal vector ~n(0) = (0, . . . , 1).

The orthogonal complement of C~n(0) coincides exactly with HΦn|0.

2.11 Compactification of the Heisenberg group

Recall that sterographic projection relates the spaces Sn and Rn. A similar

mapping is available between the sphere S2n+1 ⊂ Cn+1 and the Heisenberg
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group Φn, if we give the sphere a sub-Riemannian metric.

Definition 2.11.1. Let J1 be the diagonal (n + 2) × (n + 2) matrix with en-

tries −1, 1, . . . , 1. The set of null points in CP1 with respect to the associated

Hermitian form is exactly the unit sphere S2n+1 ⊂ Cn+1 ⊂ CPn+1. We give

S2n+1 a sub-Riemannian metric (see §2.10) dsR by restricting the Euclidean

inner product on Cn+1 to HS2n+1 := TCS2n+1.

The sub-Riemannian sphere is related to the Heisenberg group by a change of

coordinates. Namely, we can define a generalized stereographic projection from

S2n+1 to Φn by first relating J1 and J3, and then S and Φn. More precisely,

Definition 2.11.2. The Cayley transform on CPn+1 is the map given by the

matrix

C =

 1 0 1

0 (1− i)I 0

i 0 −i

 ,

which satisfies (projectively) C†J1C = J3 and sends S to S2n+1. The stereo-

graphic map from Φn to S2n+1 is the composition of (z, t) 7→ (z(1 + i), |z|2 + it)

sending Φn to S with the action of the Cayley transform:

(z, t) 7→

(
2z

1 + |z|2 + it
,
i(1− |z|2 − it)

1 + |z|2 + it

)
.

The stereographic unitary representation of Φn is, likewise, the image of Φn in

U(n+ 1, 1; J1) under the composition of C with U : Φn → U(n+ 1, 1; J3).

Remark 2.11.3. Stereographic projection provides an explicit Darboux chart

for the contact structure on S2n+1.

We thus have the group Φn sitting inside the conformal automorphism group

of the sub-Riemannian S2n+1, just as Euclidean space sits within the conformal

group of the Riemannian sphere. We finish the chapter with the following

characterization of Φn from this perspective.

Proposition 2.11.4. Let U(n + 1, 1) be the unitary group of signature (n +

1, 1) and p ∈ CPn+1 a null point for the associated Hermitian from. Then the

subgroup of U(n+1, 1) of transformations fixing exactly the point p is isomorphic

to Φn.

Proof. Using the symmetries of S2n+1, we may assume p is the north pole.

After applying the Cayley transform, the task becomes to identify the conformal

transformations of S that have no fixed points. These are exactly the maps

U(Φn).
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Chapter 3

Heisenberg geometry
distorted

In Chapter 2, we focused on the Heisenberg group Φn from a relatively rigid

algebraic perspective. We saw that the study of conformal mappings of Φn led

to interesting directions in number theory and dynamical systems.

We now expand our point of view to include a much wider class of spaces

and mappings. We will be interested in sub-Riemannian manifolds, which

share much of the structure of Φn while being flexible enough to allow applica-

tions ranging from robotics to neurophysiology. As in the Riemannian context,

isometries and conformal mappings become far more rare in the study of sub-

Riemannian manifolds. We are therefore led to consider quasi-conformal homeo-

morphisms and quasi-regular branched covering maps between sub-Riemannian

manifolds.

Our primary focus will be on uniformly quasi-regular (UQR) mappings of

sub-Riemannian manifolds, whose distortion does not build up under iteration.

After building up a theory of sub-Riemannian manifolds and the appropriate

notion of differentiation, we will show that every UQR mapping leaves invariant

a measurable conformal structure in §3.9 and provide a family of examples of

non-trivial UQR mappigns in §3.10.

The material in this chapter is based on joint work with Katrin Fässler and

Kirsi Peltonen [30].

3.1 Sub-Riemannian manifolds

Definition 3.1.1. Let M be a smooth manifold, and HM ⊂ TM a smooth

subbundle (that is, a smoothly-varying choice of subspace of each tangent space;

though we allow its dimension to vary). Define, inductively:

H1M = HM Hi+1M = [H1M,HiM ]

If there exists an s > 0 such that HsM = TM , then one says that HM is

completely non-integrable, and M is a sub-Riemannian manifold. If the dimen-

sion of each HiM is constant on M , then M is equiregular. A curve γ ⊂ M is

admissible (or horizontal) if γ̇ ∈ HM almost everywhere.

Note that the condition thatHM is completely non-integrable is the opposite
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of the assumption of the Frobenius theorem, which states that a distribution

that is closed under the Lie bracket is tangent to a foliation of the space by

submanifolds.

Theorem 3.1.2 (Chow’s Theorem). Connected sub-Riemannian manifolds are

path-connected by admissible curves. Furthermore, a choice of inner product on

HM induces a path metric that generates the standard topology on M .

Example 3.1.3. The metric dsR on Φn is a sub-Riemannian metric.

Example 3.1.4. The sub-Riemannian sphere in Definition 2.11.1 is a sub-

Riemannian manifold.

Example 3.1.5. Consider the following vector fields on M = R2:

X =
∂

∂x
Y = x

∂

∂y

Let HM = 〈X,Y 〉. It is easy to see that the distribution is bracket-generating,

so choosing X and Y to be unit vectors (except along x = 0) gives M a sub-

Riemannian metric. The space is called the Grushin plane. While it is the most

straight-forward non-trivial sub-Riemannian metric space, it is not homogeneous

and is less-studied than Φn.

Example 3.1.6. The unit tangent bundle T 1R2 of the Euclidean plane admits a

sub-Riemannian metric. Namely, a vector is allowed to turn or to move forward

in R2 in the direction it is facing. The resulting roto-translation space may also

be thought of as the orientation-preserving isometry group Isom+(R2) of R2,

or as the space C× S1. One can also consider the universal cover R̃T = C× R
on which the distribution is easiest to write down:

HR̃T =

〈
cos θ

∂

∂x
+ sin θ

∂

∂y
,
∂

∂θ

〉
.

One may think of the sub-Riemannian RT as specifying the positions of a

wheelbarrow, with the restriction to HRT signifying that one can push the

wheelbarrow forward or rotate it, but not push it over sideways.

Example 3.1.7. Let M be a complete Riemannian manifold and T 1M its unit

tangent bundle. One can give T 1M a sub-Riemannian metric by allowing a

vector (p, v) ∈ T 1M to change v while fixing p, or to change p in the direction

that v is pointing.

3.2 Carnot groups

Riemannian manifolds can be thought of on the small scale as a distorted version

of Rn. Indeed, this is formalized by the notion of tangent space and the expo-

nential map. For sub-Riemannian manifolds, the natural infinitesimal model is
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given by a class of Lie groups called Carnot groups. We make this precise in

§3.3 and provide a corresponding notion of derivative in §3.7.

Enrico LeDonne recently characterized Carnot groups as exactly the spaces

where one can intrinsically make sense of differentiation. Indeed, he shows in

[26] that any locally-compact geodesic metric space with a transitive isometry

group and admitting non-trivial homotheties is a Carnot group with a sub-

Finsler metric. We now give the classical definition of Carnot groups:

Definition 3.2.1 (Carnot group). A connected and simply-connected Lie group

G with Lie algebra g is a Carnot group if there exists a splitting

g = g1 ⊕ · · · ⊕ gs

of the Lie algebra into sub-vector-spaces satisfying [gi, g1] = gi+1 for all 1 ≤ i <
s. We then have that g is generated by g1 as a Lie algebra, and the group G is

nilpotent of step s.

It is common to equip a Carnot group with a left-invariant sub-Riemannian

metric by choosing an inner product on g1, or with a sub-Finsler metric by

choosing a norm on g1. One then obtains a distance function by measuring

distances along horizontal curves, where the horizontal subspace is given by

HG = g1.

Example 3.2.2. A Carnot group with step 1 is simply Rn with the standard

group law. In this case, HRn is the full tangent space, so a choice of left-

invariant inner product gives Rn a metric isometric to the usual one. A choice

of left-invariant norm on the tangent space induces a metric that is bi-Lipschitz

to the usual one.

Example 3.2.3. The simplest step-2 Carnot groups are the Heisenberg groups

Φn. Letting i = 1, . . . , n, consider the vector fields

Xi =
∂

∂xi
− 2yi

∂

∂t
Yi =

∂

∂yi
+ 2xi

∂

∂t
T =

∂

∂t
.

Computing the Lie brackets, one sees that the Lie algebra of Φn has the pre-

sentation h = 〈Xi, Yi, T : [Xi, Yi] = 4T 〉. The desired splitting h = h1 ⊕ h2 is

given by the vector spaces h1 = 〈Xi, Yi〉, h2 = 〈T 〉.

The exponential mapping exp : g → G on a Carnot group is a diffeomor-

phism. This allows us to conflate g and G, as one does with T0Rn and Rn .

Indeed, given a nilpotent g with the desired splitting, one can write the cor-

responding group law using the Baker–Campbell–Hausdorff formula, using the

same exponential coordinates for both g and G. For the Heisenberg group, the

exponential coordinates agree with the geometric model.

We mentioned in Remark 2.4.2 that the automorphisms of the Heisenberg

group are generated by the dilations δr and the transformations A⊕ 1, where A

is a symplectic linear transformation of the Cn component. Here, the constraint
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on the linear transformation A comes from the need to preserve the Lie algebra

of Φn. One does have additional Lie group automorphisms such as (x, y, t) 7→
(x+ t, y, t), but these do not preserve the splitting h = h1⊕ h2 or the horizontal

distribution HΦn.

We say that an automorphism of a Carnot group G is grading-preserving if

the induced map on the Lie algebra g preserves the splitting g = g1 ⊕ · · · ⊕ gs.

While some Carnot groups admit a large number of grading-preserving au-

tomorphisms (such as the maps A ⊕ 1 of Φn), for generic Carnot groups, one

has fewer automorphisms. Namely, one is limited to the dilations

δr(g1 ⊕ · · · ⊕ gs) = (rg1)⊕ · · · ⊕ (rsgs),

where gi is a vector in the gi layer of g.

This rigidity of Carnot group automorphisms leads to more general rigidity

phenomena, see Theorem 4.7.1.

3.3 Gromov–Hausdorff tangent spaces

We now explain the sense in which Carnot groups serve as models of equiregular

sub-Riemannian manifolds. A corresponding differentiation theorem will be

provided in §3.7.

Informally, the tangent space to a metric space X at a point x is another

metric space X∞ with a choice of point x∞ such that small balls in X centered

at x look (after rescaling) like balls in X∞ centered at x0. More precisely:

Definition 3.3.1 (Gromov–Hausdorff tangent space). Let (X,x) be a pointed

metric space. Then (X∞, x∞) is the tangent space to X at x if there exists

a sequence of rescalings ri and mappings fi : (X∞, x∞) → (X,x; ridX) that

is asymptotically isometric on compacts (see Definition 2.2.8). Note that the

compacts (or balls) are chosen in X∞, but represent arbitrarily small sets in X

due to the rescaling of the metric.

Example 3.3.2. The tangent space to a Riemannian manifold of dimension n

at any point is unique and isometric to Rn. Indeed, one takes fi(x) = exp(r−1
i x).

Example 3.3.3. The tangent space to a Carnot group G at any point x ∈ G
is unique and isometric to G.

Remark 3.3.4. The rescaling sequence ri can affect the tangent space. In-

deed, there exist metric spaces that have multiple tangent spaces, depending on

the choice of the rescaling sequence. Furthermore, the tangent space can vary

discontinuously from point to point [50], see also the discussion in [27].

Theorem 3.3.5 (Mitchell [34]). Let M be an equiregular sub-Riemannian man-

ifold and p ∈ M . Then there exists a Carnot group G with a sub-Riemannian

metric such that the Gromov–Hausdorff tangent space TpM is isometric to G.
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Example 3.3.6. Let M be a Riemannian manifold, and p ∈M . Then TpM is

isometric to Rn.

Example 3.3.7. Let M = S2n+1 be a sub-Riemannian sphere, and p ∈ M .

One shows using stereographic projection that TpM is isometric to (Φn, dsR).

Example 3.3.8. Let M = RT , and p ∈ M . Using Taylor approximation of

the vector fields generating the horizontal distribution, one shows that TpM is

isometric to (Φ1, dsR).

Example 3.3.9. The Grushin plane is not equiregular. Away from the y-axis,

it is Riemannian, hence approximated by R2. At the origin (and similarly along

the whole y-axis) the Grushin plane is self-similar via the dilations δr(x, y) =

(rx, r2x), and it follows that it serves as its own tangent space. Note that the

Grushin plane is not a Carnot group.

At the moment, the Gromov–Hausdorff tangent spaces at different points on

a metric space are defined independently of each other. We will see in §3.7 that

for equiregular sub-Riemannian manifolds a canonical “exponential map” allows

us to speak of differentiability, and one can arrange the spaces into a (Gromov–

Hausdorff) tangent bundle and speak of continuous or measurable derivatives.

Note, however, that this exponential map does not have the properties one

expects from Riemannian geometry. Most critically, it need not be locally bi-

Lipschitz.

3.4 Quasi-conformal mappings

We now turn to the mapping theory of sub-Riemannian manifolds.

Recall that a conformal mapping f : X → Y is a homeomorphism that,

infinitesimally, sends balls to balls (see Definition 2.4.4). Quasi-conformal map-

pings, infinitesimally, send balls to ellipsoids.

Definition 3.4.1. Let X, Y be two metric topological manifolds, and f : X →
Y a homeomorphism. One says that f isK-quasi-conformal (K-qc), withK ≥ 1,

if one has

Hf (x) = lim sup
r→0

supy |fx− fy|
infy |fx− fy|

≤ K

at all points x ∈ X. Here, the supremum L(x) = supy |fx− fy| and infimum

l(x) = infy |fx− fy| are taken over all points y with |x− y| = r. If f is K-qc

for some K, then it is quasi-conformal (QC)

Remark 3.4.2. Definition 3.4.1 is the metric definition of quasi-conformality

relevant when X and Y are topological manifolds. For arbitrary metric spaces

X and Y (such as the Sierpinski carpet) one has to be more careful about the

existence of spheres of radius r to establish a meaningful theory.
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Subclasses of quasi-conformal mappings include isometries, bi-Lipschitz, and

conformal mappings. In Rn and Φn, 1-quasi-conformal mappings coincide with

conformal mappings. When K > 1, however, quasi-conformal mappings be-

come less rigid. For example, any diffeomorphism between compact Rieman-

nian manifolds is quasi-conformal. Indeed, the Teichmuller distance between

two hyperbolic surfaces S1, S2 is the logarithm of the infimal K such that there

exists a K-qc mapping from S1 to S2.

We now provide some examples of quasi-conformal mappings in Rn.

Example 3.4.3. The planar map f(x, y) = (x, 2y) is 2-quasi-conformal.

A large class of QC mappings of Rn is provided by

Lemma 3.4.4. Every diffeomorphism f : Rn → Rn is locally quasi-conformal

onto its image. More generally, let λ+(~x) and λ−(~x) be the largest and smallest

singular values of df |x, respectively. If λ+/λ− is bounded, then f is quasi-

conformal.

Proof. By definition of the singular values, an infinitesimal unit ball at ~x is sent

to an ellipse with major axis of length λ+(x) and minor axis λ−(x). Quasi-

conformality requires that the ratios of these be globally bounded, which is

always true locally.

Example 3.4.5. Quasi-conformal mappings are a priori only homeomorphisms.

Indeed, the mapping

z 7→ z |z|s

of the complex plane is QC for s > −1 but is not differentiable at the origin for

s < 0 (the definition is checked directly at 0 and via derivatives elsewhere).

The simplest non-smooth quasi-conformal mapping of Rn is given by:

Example 3.4.6. The inversion map on Rn\{0} given by ι(~x) = −~x/ |~x|2 is

(quasi-)conformal, but sends arbitrarily small sets to arbitrarily large ones.

So far, only Example 3.4.5 has been non-smooth.

Example 3.4.7. Let f(x) be a Lipschitz mapping of R. Then the shear

F (x, y) = (x, y + f(x)) is bi-Lipschitz, hence quasi-conformal. It is possible

that f is not differentiable on an uncountable set (say, if f is the Cantor stair-

case), in which case F is also not differentiable on an uncountable set.

Although this is not immediate from Definition 3.4.1, the class of quasi-

conformal mappings are closed under composition and inversion, so the above

examples generate a large class of quasi-conformal mappings. We will obtain

yet more in §3.5.

We now turn to quasi-conformality in Φn, where Definition 3.4.1 continues

to make sense.
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Example 3.4.8. According to the Liouville Theorem, every 1-quasi-conformal

mapping between domains in Φn is a Möbius transformation.

An immediate counterpart to Lemma 3.4.4 is

Lemma 3.4.9. Let f : Φn → Φn be a smooth transformation preserving the

contact structure HΦn. Then f is locally quasi-conformal. That is, the restric-

tion of f to any bounded domain is quasi-conformal onto its image.

Although Lemma 3.4.9 seems like a good way to produce quasi-conformal

mappings, it is in practice difficult to come up with contact mappings of Φn.

We will describe the quasi-conformal flow approach in §3.5.

A large class of QC mappings is immediately provided by the following lifting

theorem, in conjunction with Example 3.4.7.

Theorem 3.4.10 (Capogna–Tang [10]). Let f : R2 → R2 be a K-quasi-

conformal homeomorphism that preserves Euclidean area. Then there exists

a K-quasi-conformal homeomorphism F : Φ1 → Φ1 that lifts f .

That is, F satisfies π ◦ f = F ◦ π and ar ◦ F = F ◦ ar, where π : Φ1 → C is

the standard projection in geometric coordinates, and ar(z, t) = (z, t+ r).

In higher dimensions, symplectic quasi-conformal mappings of Cn lift to R-

invariant quasi-conformal mappings of Φn.

The following questions concerning QC mappings of Φn seem to be open at

the moment (see also the related Question 3.11.5).

Question 3.4.11. Let f : Φn → Φn be quasi-conformal. Is it almost-everywhere

differentiable (in the classical sense)?

Question 3.4.12 ([20]). Does there exist a quasi-conformal mapping f : Φn →
Φn such that f({(x, 0, 0) : x ∈ R}) = {(0, 0, t) : t ∈ R}?

Recall that the stereographic projection C : Φn → S2n+1 is conformal. Con-

jugating with C, every quasi-conformal mapping of Φn yields a quasi-conformal

mapping of the sub-Riemannian S2n+1.

It is more difficult to find quasi-conformal mappings between more compli-

cated sub-Riemannian manifolds, or to show that they do not exist. The theory

in this chapter is largely motivated by this task.

3.5 Modifying quasi-conformal mappings

We are now interested in ways in which one can perturb a quasi-conformal

mapping. In particular, we would like to extend mappings defined on a subset

of a larger space, or reconcile quasi-conformal mappings defined on two different

subsets.

In the case of extension, notice that a QC mapping f : Rn → Rn does not

readily extend to a QC mapping of Rn+1. For example, because one has control
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only on the relative distance distortions, the trivial extension f ⊕ id : Rn+1 →
Rn+1 is quasi-conformal if and only if f is in fact bi-Lipschitz, in which case

f ⊕ id is in fact bi-Lipschitz.

Likewise, suppose one has two regions U, V ⊂ Rn+1 and maps fU : U →
Rn, fV : V → Rn each of which is quasi-conformal onto its image. One would

like to paste together fU and fV to create a unified mapping F : U ∪ V → Rn

that is quasi-conformal onto its image. If fU and fV embed in flows (see below),

this is straightforward, as one can use a bump function to trivialize the mappings

on U ∩ V .

The general answer in Rn for both concerns is based on Sullivan’s deep results

in [45]. These are based, in turn, on the investigation of algebraic topology and

algebraic geometry of hyperbolic manifolds explored by Deligne–Sullivan in [11].

Theorem 3.5.1 (Tukia–Väisälä [49]). Let f : Rn → Rn be a quasi-conformal

mapping (quasi-symmetric for n = 1). Then there exists a quasi-conformal

mapping F : Rn+1 → Rn+1 whose restriction to Rn × {0} equals f .

Theorem 3.5.2 (Sullivan’s annulus extension [45, 47]). Let f : Rn\A → Rn

be a quasi-conformal embedding, for A an annulus. Then there exists a quasi-

conformal F : Rn → Rn extending f in the sense that F |Rn\A′ = f , for an

annulus A′ containing the closure of A.

Remark 3.5.3. For our extension of Theorem 3.5.1 see Theorem 4.7.4 and [30].

Analogues of Theorems 3.5.1 and Theorem 3.5.2 are not known in general

metric spaces. In sub-Riemannian spaces, we are only able to perturb quasi-

conformal mappings that embed in flows.

Recall that a flow (on a smooth manifold) is a family ft of diffeomorphisms

satisfying ft1+t2 = ft1 ◦ ft2 . A flow is generated by a vector field ξ if one has

ξ(x) = dft(x)
dt

∣∣∣
t=0

at each x in the manifold.

In the Riemannian setting, a flow can be adjusted by directly modifying the

vector field ξ. For example, one can use a bump function to make the vector

field zero on some region. For sub-Riemannian manifolds, such a modification

can produce mappings that do not preserve the horizontal direction and are

therefore not quasi-conformal. For sub-Riemannian manifolds with a contact

structure, a characterization of appropriate flows was given by Libermann and

adapted to the quasi-conformal theory by Korányi–Reimann:

Theorem 3.5.4 (Libermann [29], Korányi–Reimann [25]). Let Xi, Yi, T be the

standard left-invariant vector fields on Φn (see Example 3.2.3). A vector field ξ

on Φn generates a contact flow if and only if it is of the form

1

4

n∑
i=1

(Xi(ρ)Yi − Yi(ρ)Xi) + ρT,

where ρ is a smooth potential function. Furthermore, the diffeomorphisms ft
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generated by the flow are quasi-conformal if the second derivatives of ρ with

respect to the vector fields Xi, Yi are bounded (in a quantitative way).

We can thus specify a quasi-conformal mapping of Φn by specifying a rea-

sonable function ρ on Φn. We can also mimic the annulus extension theorem

for some mappings that embed in flows.

Lemma 3.5.5. Let f : Φn → Φn be a mapping that embeds in a quasi-conformal

flow, i.e. f = f1 for a flow ft generated by a vector field ξ as in Theorem 3.5.4.

For each neighborhood U of the origin, there exists a radius r and mapping F

such that:

1. F is quasi-conformal,

2. F = f outside of U ,

3. F is the identity on the ball B(0, r).

Proof. Let P (x) be a potential function defined by g(x)ρ(x) where ρ is the

potential associated to the flow ft and g is a smooth bump function equal to

zero at the origin and one far from it. Let Ft be the flow associated to P . The

mapping F = F1 is the desired mapping.

3.6 Pansu differentiability

The quasi-conformal mappings in sections 3.4 and 3.5 are all smooth or at least

almost-everywhere differentiable. In the Euclidean case, this is true in general:

Theorem 3.6.1 (Stepanov–Rademacher [19]). Let f : M → N be a mapping

between Riemannian manifolds. Then f is almost everywhere differentiable on

the set {x : Lipf (x) <∞}, where Lipf (x) = lim supy→x d(fx, fy)/d(x, y).

Corollary 3.6.2. Let f : M → N be a quasi-conformal mapping between Rie-

mannian manifolds. Then f is almost everywhere differentiable, with the deriva-

tive df varying measurably.

It is not known whether every quasi-conformal mapping of sub-Riemannian

manifolds is almost-everywhere differentiable. For Carnot groups (§3.2), a dif-

ferentiability result is due to Pansu. We describe a more general differentiability

theorem in §3.7.

Recall that a map f of Rn is differentiable at x0 if there exists a linear

mapping df of Rn such that

lim
x→x0

|fx− (fx0 + df(x− x0))|
|x− x0|

= 0

Equivalently, one has that the following limit converges uniformly-on-compacts

in v ∈ Rn:

lim
r→0

|f(x0 + rv)− (fx0 + df(rv))|
r

= 0.
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Definition 3.6.3. A mapping f : G1 → G2 is Pansu differentiable at a point

x0 ∈ G if there exists a graded homomorphism df : G1 → G2 that approximates

f at x0. That is the following limit converges uniformly-on-compacts in v ∈ G1.

lim
r→0

d(f(x0 ∗ δrv), fx0 ∗ df(δrv))

r
= 0,

where d denotes the distance in G2.

Theorem 3.6.4 (Pansu–Rademacher Theorem [38]). Let f be a Lipschitz or

quasi-conformal mapping between domains in Carnot groups. Then at almost

every point in the domain of f , the Pansu derivative of f exists.

Corollary 3.6.5. There does not exist a quasi-conformal mapping f : Φn → Rm

for any n,m.

Proof. By topological considerations, one would require m = 2n + 1. Thus, a

QC mapping f : Φn → R2n+1 would have a derivative df at some point, which

would be a Lie group isomorphism df : Φn → R2n+1. But the groups are not

isomorphic (in particular, Φn has a one-dimensional center).

Similar arguments can be used to restrict Lipschitz mappings between Φn

and Rn, or between more general Carnot groups. In a similar manner, Pansu

proves:

Corollary 3.6.6. Suppose G is a Carnot group with Lie algebra g. Suppose

further that every Lie algebra automorphism of g is a dilation δr. Then any

quasi-conformal mapping U → V , for U, V ⊂ G is induced by a homothety of

all of G.

Remark 3.6.7. One can use Pansu differentiability to define “Pansu manifolds”

analogous to smooth manifolds. We explore this idea in §3.11.

3.7 Margulis–Mostow differentiability

The idea of the derivative is to zoom in to a space and observe infinitesimal

behavior. That is, given a map f : X → Y between metric spaces and a point

p ∈ X, we would like to dilate X around p and Y around fp to get a “zoomed

in” version of f . We would then like to take a limit as we zoom in more and

more.

The exact way one zooms into a point can make a difference as to what

maps are differentiable, even in Euclidean space, and one has to make a choice

of zooming sequence to discuss differentiability. This is possible in Riemannian

manifolds via any smooth coordinate chart, and in equiregular sub-Riemannian

manifolds via privileged coordinates.

Recall that an equiregular sub-Riemannian manifold is a smooth manifold

with a smooth distribution HM ⊂ TM and a smooth choice of inner product on
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HM , with the further restriction that the higher brackets of HM have constant

dimension and eventually span TM . Denote the dimensions of the horizontal

distribution and its brackets by:

q1 = dimH1M = dimHM

q2 = dimH2M − q1 = dim〈HM, [HM,HM ]〉 − q1

· · ·

qs = dimHsM −
s−1∑
i=1

qi = dimTM −
s−1∑
i=1

qi

Definition 3.7.1 (Priveleged coordinates). Let M be a sub-Riemannian man-

ifold of dimension n with horizontal distribution HM and inner product gsR.

A privileged coordinate chart at a point p ∈ M is a smooth chart Ψ : U → M ,

for 0 ∈ U ⊂ Rn satisfying:

1. Ψ(0) = p,

2. The vectors dΨ|0( ∂
∂x1

), . . . , dΨ|0( ∂
∂xn

) are in HpM and orthonormal with

respect to gsR,

3. For each i, the vectors dΨ|0( ∂
∂x1

), . . . , dΨ|0( ∂
∂xq1+···+qi

) span HiM .

Example 3.7.2. The geometric coordinates for Φn are (after the standard

identification with R2n+1) privileged coordinates.

Example 3.7.3. For Riemannian manifolds, privileged coordinates are pro-

vided by the exponential map.

Priveleged coordiantes are easily constructed on any sub-Riemannian mani-

fold. Namely, let v1, . . . , vn be vectors in TpM such that v1, . . . , vq1 are orthonor-

mal vectors spanning HM , and such that for each i the vectors v1, . . . , vq1+...+qi

span the first i layers HiM of TM . Let Ψ be any smooth chart. Up to a

composition with a translation normalizing Ψ−1(p) and linear transformation

normalizing each dΨ(vj), Ψ is a privileged coordinate chart.

In privileged coordinates, as in the geometric model of Φn, one can mimic

Carnot group dilations to define a mapping

δr(~x1, . . . , ~xs) := (r~x1, . . . , r
s~xs).

Except in special cases, this is not a homothety, but it is an asymptotic ho-

mothety (that is, an asymptotic isometry up to a rescaling of the metrics by

factor r). That is, the sub-Riemannian metrics on Rn (defined near 0) limit to

a metric on Rn that happens to be isometric to TpM . Indeed, this is the key to

Mitchell’s approach in [34] for identifying the Gromov–Hausdorff tangent spaces

of sub-Riemannian manifolds.
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Definition 3.7.4. Let f : M → N a mapping between equiregular sub-

Riemannian manifolds, and p ∈ M . Suppose there is a grading-preserving

isomorphism dpf : TpM → TfpN such that, in some (any) privileged coordi-

nates one has that

lim
r→∞

δr ◦ f ◦ δ−1
r = dpf,

where the limit denotes uniform convergence on compacts. Then dpf is the

Margulis–Mostow derivative of f at p, and f is Margulis–Mostow differentiable

at p.

Theorem 3.7.5 (Margulis–Mostow [33]). Let f : M → N be a quasi-conformal

mapping between equiregular sub-Riemannian manifolds. Then dpf exists at

almost every p.

Indeed, the map df : TM → T N is measurable, see Lemma 6.3 of [13].

Remark 3.7.6. In Theorem 3.7.5, “almost everywhere” refers to the standard

notion of zero-measure on smooth manifolds. By Mitchell [34], this further

agrees with the notion of Hausdorff measure zero, in the appropriate dimension

Q =
∑
i iqi.

Example 3.7.7. If M and N are Riemannian manifolds, the Margulis–Mostow

derivative agrees with the classical derivative (with the classical tangent spaces

interpreted as Gromov–Hausdorff tangent spaces).

Example 3.7.8. If M and N are Carnot groups, then the Margulis–Mostow

derivative agrees with the Pansu derivative (with the Lie algebra interpreted as

a Gromov–Hausdorff tangent space).

3.8 Uniformly quasi-regular mappings

Quasi-conformal mappings often come in groups, and one is often able to use

this fact to show that they are, in fact, conformal. This is key to the proof of

Mostow’s celebrated rigidity theorem [35]. We are interested in the following

theorem of Tukia:

Theorem 3.8.1 (Tukia [46]). Let Γ be a group of K-quasi-conformal transfor-

mations acting on Sn. Then there exists a measurable conformal structure on

Sn preserved by every element of Γ.

Here, a measurable conformal structure is a choice of inner product g on Sn,

defined up to rescaling and varying measurably (alternately one can think of a

conformal structure as a choice of an ellipsoid in the tangent space over each

point). A measurable conformal structure represented by an inner product g

is invariant under a quasi-conformal mapping f if one has f∗g = λg, for some
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measurable λ. Here, f∗ is the pullback of the inner product defined using the

Rademacher theorem.

Our goal now is to state an analogue of Theorem 3.8.1 for quasi-regular

mappings, which allow for some non-injectivity while maintaining the general

idea of quasi-conformality.

Definition 3.8.2. Let f : M → N be a continuous mapping between two

oriented topological manifolds of dimension at least two. The mapping is

a branched cover if it is discrete (every point has a discrete preimage) and

orientation-preserving. The branch set of f is the minimal closed set Bf such

that f |M\Bf is a covering map onto its image (that is, a local homeomorphism

onto its image).

The following is a classical topological result (see Rickman [39] for this lemma

and the general theory of QR mappings in Rn).

Lemma 3.8.3. The branch set Bf has topological codimension at most 2.

Definition 3.8.4. Let M,N be equiregular sub-Riemannian manifolds. A

branched mapping f : M → N is K-quasi-regular if the dilatation of f at every

point is at most K (see Definition 3.4.1), and furthermore Bf has measure zero.

A map f : M → M is uniformly K-quasi-regular if every composition f ◦
· · · ◦ f is K-quasi-regular for the same K.

Differentiability is a key step for even stating an analogue of Theorem 3.8.1.

Lemma 3.8.5 (Fässler–Lukyanenko–Peltonen [13]). Let f : M → N be a

quasi-regular mapping between two equiregular sub-Riemannian manifolds. Then

dpf : TpM → TfpN exists and is furthermore a K-quasi-conformal mapping for

almost every p ∈M .

Sketch of proof. Away from the branch set, f is locally K-quasi-conformal onto

its image. Thus, the Margulis–Mostow derivative exists at almost every point

(Theorem 3.7.5). Furthermore, one shows that the quasi-conformality condition

passes to the tangent space under the Gromov–Hausdorff limit.

Definition 3.8.6. A measurable conformal structure on a sub-Riemannian

manifold M is a choice g of inner product on the horizontal distribution HM ,

up to rescaling. It is invariant under a quasi-regular mapping f : M → M if

one has that f∗g = λg for some measurable λ.

Here, we must specify what we mean by f∗g, since the inner product g

exists on the horizontal distribution HM , while f∗ must be defined using the

Margulis–Mostow derivative df on the Gromov–Hausdorff tangent space. The

key is to use privileged coordinates at each point p to identify Rq1 with both the

horizontal distribution of HpM and the horizontal distribution of the Carnot

group TpM (see Definition 3.7.1).

We can now state our generalization of Theorem 3.8.1:

38



Theorem 3.8.7 (Fassler–Lukyanenko–Peltonen [13]). Let f : M →M be a uni-

formly quasi-regular mapping on a sub-Riemannian manifold. Then M admits

a measure conformal structure preserved by f .

3.9 Dynamics of UQR mappings

We now sketch the proof of Theorem 3.8.7, which relies primarily on a rein-

terpretation in terms of vector bundles, followed by the use of Tukia’s central

result in [46].

LetM be a manifold and B a finite-dimensional vector bundle overM , with a

fixed choice of inner product (on the fibers). For p ∈M , denote the fiber over M

by Fp. Recall that a map f : B → B is a bundle map if f sends each fiber Fp to

another fiber (which we denote Ffp), and the restriction fp := f |Fp : Fp → Ffp

is linear. Since f takes fibers to fibers, it induces a map f |M : M → M , which

we continue to denote as f .

We say that a vector bundle map f : B → B has bounded distortion if

sup
p∈M

supv∈Fp |fv| / |v|
infv∈Fp |fv| / |v|

= C <∞. (3.9.1)

Furthermore, f has uniformly bounded distortion if (3.9.1) holds for all iterates

fn of f , with C independent of n.

The bundle B admits an f -invariant measurable conformal structure if there

exists an inner product 〈·, ·〉 on the fibers of B, varying measurably, such that

for some positive measurable function λ on M we have

〈fu, fv〉 = λ〈u, v〉 (3.9.2)

for all u, v ∈ Fp for almost every fiber Fp. Typically, one also assumes a bound-

edness condition for 〈·, ·〉, which can be expressed in terms of the matrix-valued

function s associated to 〈·, ·〉.
The following theorem is a rephrasing of Tukia’s core result in [46]. We

sketch its proof to adapt it to our terminology.

Theorem 3.9.1 (Tukia [46], cf. Theorem 6.1 of [13]). Let f : B → B be a

bundle map of uniformly bounded distortion. Then B admits an f -invariant

measurable conformal structure.

Sketch of proof. Denote the given inner product on B by 〈·, ·〉0 and furthermore

fix an orthonormal basis Bp at each point p, varying measurably. Let d be the

dimension of the fibers of B.

We would like to show that there exists an inner product 〈·, ·〉 on B that is

f -invariant, up to a multiplicative factor. That is, we would like the property
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that for all u, v in each fiber Fp and for some positive function λ on M ,

〈fpu, fpv〉 = λ(p)〈u, v〉. (3.9.3)

Using the basis Bp, we may find a positive definite matrix sp ∈ GL(d,R) so that

〈u, v〉 = 〈u, spv〉0 (3.9.4)

and the invariance relation (3.9.3) becomes (taking transposes using B)

〈fpu, sfpfpv〉0 = λ(p)〈u, spv〉0, (3.9.5)

〈u, f tpsfpfpv〉0 = λ(p)〈u, spv〉0, (3.9.6)

f tpsfpfp = λ(p)sp. (3.9.7)

We now assume sp has determinant one, so that (3.9.3) further reduces to

(det fp)
−2/df tpsfpfp = sp. (3.9.8)

Note now that sp needs to be an element of the space S ⊂ SL(d,R) of

positive definite symmetric matrices. Tukia points out that S may be identified

with SL(d,R)/SO(d), a non-positively curved symmetric space. Normalized

transpose-conjugation by an element of GL(d,R), as in (3.9.8), is an isometry

of S.

We are now ready to construct sp. Consider first the orbit of p under f:

O(p) = {fnp : n ∈ N}. (3.9.9)

Note that we have O(fp) = fO(p). Now, consider the transformations (fn)p :

Fp → Ffnp as elements of S:

S(p) = {(det (fn)p)
−2/d(fn)tp(f

n)p : n ∈ N} ⊂ S. (3.9.10)

We obtain the invariance equation S(fp) = fp · S(p) = (det fp)
−2/df tpS(p)fp.

Under the standard metric on S, the uniformly-bounded condition on f

gives us that S(p) is a bounded set in S. Tukia shows that every bounded

set in S is contained in a unique ball of minimum radius. Take sp ∈ S to

be the center of the unique ball of minimum radius containing S(p). Because

transpose-conjugation is an isometry in S, the invariance relation on S(p) turns

into (3.9.8).

We thus have that the conformal class of 〈u, v〉 := 〈u, spv〉 is f -invariant.

It remains to show that it is also measurable. It is clear that the map p 7→
S(p) is measurable, and Tukia shows that “averaging” operation S(p) 7→ sp is

continuous with respect to the Hausdorff topology on subsets of S.

Theorem 3.8.7 follows Theorem 3.9.1 by considering the bundle HM , with

40



the bundle map derived from the quasi-regular mapping via the Margulis–

Mostow derivative. The fact that the derived map is measurable and has

bounded distortion is intuitively clear, and is formalized in the full proof of

Theorem 3.8.7 provided in [13].

3.10 Existence of UQR mappings

Theorem 3.8.7 provides a restriction on the existence of uniformly quasi-regular

mappings on a sub-Riemannian manifold M . We finish the chapter with a

construction of such a mapping:

Theorem 3.10.1 (Fassler–Lukyanenko–Peltonen [13]). Let Lp,q be a lens space

with parameters p,q, with the natural sub-Riemannian metric. Then there exists

a uniformly quasi-regular mapping f : Lp,q → Lp,q with non-empty branch set.

We first recall the definition of a lens space and its natural sub-Riemannian

structure. As a special case, Theorem 3.10.1 applies to the sub-Riemannian

sphere S2n−1 (=L1,q), and we will focus on it for the purposes of this section.

Definition 3.10.2. Recall that S2n−1 ⊂ Cn has a sub-Riemannian structure

given by HxS2n−1 = (C~n(x))⊥ and inner product induced by the standard inner

product on Cn. Multirotations of Cn, of the form

Rθ1,...,θn(z1, . . . , zn) = (eiθ1z1, . . . , e
iθnzn),

preserve S2n−1 and act on it by isometries.

Let p ∈ N, and ~q = (q1, . . . , qn) ⊂ Nn, all nonzero and each qi relatively

prime to p. The lens space Lp,q is the quotient space S2n−1/〈R2πq1/p,...,2πqn/p〉.
The group generated by the rotation is cyclic of order p, and serves as the

fundamental group of the manifold Lp,q. Furthermore, the contact structure

and sub-Riemannian metric on S2n−1 descends to a contact structure and sub-

Riemannian metric on Lp,q.

The mapping f in Theorem 3.10.1 is built from the following family of map-

pings:

Lemma 3.10.3. Let a ≥ 1 and fa(r1e
iθ1 , . . . , rne

iθn) = (r1e
aiθ1 , . . . , rne

aiθn).

Then fa is a quasi-regular mapping of S2n+1. Furthermore, if p divides a, then

f induces a quasi-regular self-map of Lp,q for any q.

Sketch of proof. The proof of Lemma 3.10.3 splits into two parts. It is immedi-

ately clear that fa is a branched cover with a null branch set. Indeed, the branch

set is exactly the set of points for which some ri = 0. Next, one shows that fa

is “radially bi-Lipschitz mappings,” that is it sends all spheres to quasi-spheres

but is not necessarily locally homeomorphic. One shows that fa is radially

bi-Lipschitz (this is easier away from the branch set), and that, in turn, such

mappings are quasi-regular.
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The proof of Theorem 3.10.1 proceeds by turning fa into a uniformly quasi-

regular mapping by using the conformal trap method, which is best explained

using an example:

Example 3.10.4 (Conformal trap construction). Suppose we have a quasireg-

ular planar map f : R2 → R2 with the following properties:

1. The point 0 has two preimages f−1(0) = {z1, z2}.

2. The closures of the unit balls B0 := B(0, 1), B1 := B(z1, 1), B2 :=

B(z2, 1), and B3 := B(f(0), 1) are disjoint and do not intersect the branch

set.

3. The map f respects the balls: f(B1) = f(B2) = B0, f−1(B0) = B1 ∪B2,

and f(B0) = B3.

4. The restriction f |∂Bi is a Euclidean translation for i = 0, 1, 2.

Under these (idealized) conditions, we can apply the conformal trap method.

First, we define a new map g1 that agrees with f outside of the balls Bi, and

inside the balls Bi is given by a Euclidean translation provided by Condition

(4). Next, we write g = ι ◦ g1, where ι(z) = 1
z is inversion in the unit circle.

It is now straightforward to check that g is uniformly quasi-regular. Namely,

a point inside B0 is trapped in B0 and sees no distortion. A point inside B1

or B2 likewise sees no distortion, while a point outside of B0 ∪ B1 ∪ B2 is sent

into B0 and does not see any distortion under further iterations. Furthermore,

because we are working in the Euclidean plane, the map g obtained in this way

is quasiregular provided that f was quasiregular. One also notes that the branch

sets of f and g agree.

Sketch of proof of Theorem 3.10.1. Theorem 3.10.1 modifies the mapping fa

from Lemma 3.10.3 along the lines of Example 3.10.4. One chooses a point

x ∈ S2n−1 away from the branch set Bfa and its preimage, and modifies fa in

a neighborhood of x and its preimages. This provides analogues of conditions 1

and 2 in the example.

Analogues of conditions 3 and 4 are not satisfied by fa. In the Euclidean

setting, such issues are remedied using the Sullivan Annulus Extension Theo-

rem [21, 45]. The theorem is not available in the sub-Riemannian setting, so

instead we embed fa in a local quasi-conformal flow and modify it to a mapping

satisfying conditions 3 and 4 analogously to Lemma 3.5.5.

Once the mapping fa is satisfied to fit the analogue of conditions 1–4, it

remains to identify an appropriate inversion. Recall that the conformal map-

pings of S2n−1 are given by the group of projective unitary transformations

PU(n − 1, 1). Using these transformations, one can conjugate the inversion

~z 7→ −~z to a transformation that inverts in the boundary of an arbitrarily small

region of S2n−1.
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The remainder of the proof proceeds as in Example 3.10.4. The case of more

general lens spaces is achieved by manipulating fa more symmetrically so that

the final mapping descends to a mapping of the lens space to itself.

3.11 Aside: Pansu manifolds

One would like to extend the quasi-conformal theory on Carnot groups to more

general manifolds. This can be done directly for spaces such as the torus Rn/Zn

or the nilmanifold ΦnZ\Φn with the induced metric. However, if one is to carry

over the Pansu derivative to spaces that are not Carnot groups, it is convenient

to have a theory of manifolds that is designed to accomodate it.

Recall the definition of a manifold: it is a topological space covered by

countably many open sets homeomorphic to domains (coordinate charts) in Rn.

The transition maps between coordinate charts are then homeomorphisms, and

topological invariants of Rn (such as dimension) become topological invariants

of the manifold. Stronger conditions on the transition maps (piecewise-linear,

bi-Lipschitz, C1, C∞) lead to corresponding classes of manifolds. For example,

C1 charts allow one to speak of the tangent space to the manifold, while C∞

charts allow for all of differential geometry.

Definition 3.11.1. A Pansu manifold modeled on a Carnot group G is a topo-

logical manifold M covered by countably many open sets homeomorphic to

domains in G such that the transition maps between the coordinate charts are

continuously Pansu differentiable. That is, the Pansu derivative of the transition

map is required to exist everywhere and to vary continuously.

We provide two examples of Pansu manifolds, beyond the obvious case of

M = G.

Example 3.11.2. Let M be a Pansu manifold and Γ a discrete torsion-free

group acting on M properly discontinuously and by Pansu-C1 mappings. Then

the quotient space M/Γ is also a Pansu manifold, with the Pansu structure

induced in the same way as the topological-manifold structure.

Example 3.11.3. The sub-Riemannian sphere S2n+1 is a Pansu manifold mod-

eled on Φn. Indeed, coordinates are provided by stereographic projection, with

the transition map given by the Korányi inversion ι. The fact that ι is Pansu-

C1 where defined follows from Theorem 3.11.4. More generally, the Darboux

theorem implies that every pseudoconvex submanifold of Cn+1 has an induced

Pansu manifold structure modeled on Φn.

Theorem 3.11.4 (Magnani [32]). Let U, V ⊂ G be domains in a Carnot group

G, and f : U → V a (classically) C1 mapping preserving the horizontal distri-

bution HG. Then f is Pansu-C1.

It is unclear whether the converse holds. Namely,
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Question 3.11.5. Does the converse to Theorem 3.11.4 hold? Equivalently,

does every Pansu manifold have a natural smooth structure?

In view of Question 3.11.5 we do not delve deeply into Pansu manifolds.

However, one can develop some notions parallel to the smooth setting. For ex-

ample, every Pansu manifold M is automatically equipped with a Pansu tangent

space TPM defined by gluing together the trivial bundles U × g on the coordi-

nate charts (here, g is the Lie algebra of G, on which M is modeled). Likewise,

the splitting g = g1 ⊕ · · · ⊕ gs leads to a splitting TPM = TP1 M ⊕ · · · ⊕ TPs M .

Furthermore, vectors in TP1 M can be interpreted as equivalence classes of curves

γ : [0,∞)→M whose Pansu derivative at 0 lies in T1M .

As with Riemannian manifolds, one can give Pansu manifolds a metric by

defining an inner product on TP1 M , and considering the induced path metric

(connectivity follows from the connectivity of G. If M happens to also be a

smooth manifold (that is, the defining charts are smooth), the metric will agree

with a sub-Riemannian metric on M (§3.1).

Lastly, we can speak of Pansu-smooth mappings f : M → N between Pansu

manifolds, with the differential dP f : TPM → TPN being a continuous grading-

preserving map between the tangent bundles. For bi-Lipschitz or conformal

mappings between Pansu manifolds, and we can apply the Pansu–Rademacher

theorem locally to obtain the existence of an almost-everywhere defined differ-

ential.
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Chapter 4

Hyperbolic spaces

4.1 The hyperbolic plane

The hyperbolic plane is characterized as the unique (up to isometry) simply-

connected Riemannian two-manifold of constant curvature -1, and is the nega-

tively curved counterpart to the curvature 0 Euclidean plane and curvature 1

sphere S2. More concretely, the hyperbolic plane embeds in C ⊂ CP1 as the

upper half-plane Im(z) > 0 with the line element ds2 =
dx2 + dy2

y2
. Since we

are working with a complex model, we denote the hyperbolic plane by H1
C.

Figure 4.1: The dyadic decomposition of the upper half-plane. The squares are
isometric with respect to the hyperbolic metric.

Immediately, one sees that H1
C admits a homogeneous action by the group

of isometries generated by the “parabolic” maps z 7→ z + a, for a ∈ R, and

“hyperbolic maps” z 7→ rz, for r > 0. In fact, any linear fractional transfor-

mation of CP1 preserving the upper half-plane is an isometry of H1
C. These

linear fractional transformations form the group PSL(2,R), and account for all

orientation-preserving isometries of H1
C.

The isotropic nature of H1
C is not visible in the upper half-plane but be-

comes evident in the Poincare disk model of H1
C, namely, the unit disk with the

rotation-invariant metric ds2 = 4
dx2 + dy2

(1− x2 − y2)2
. The isometry from the upper

half-plane to the unit disk is given by the Cayley transform z 7→ i
z − i

z + i
.

Remark 4.1.1. Note the factor of 4 in the line element of the Poincare model.

It is necessary to make the Poincare disk isometric to the upper half-plane and

to normalize the space to have constant sectional curvature -1. This rescaling
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Figure 4.2: The dyadic decomposition viewed in the unit disk via the Cayley
transform.

will not be necessary for the real hyperbolic model of the hyperbolic plane, which

leads to some lack of symmetry in HnC for n ≥ 2.

4.2 Hyperbolic lattices

Recall that a discrete subgroup Γ of a Lie group G is a lattice if Γ\G has

finite volume. If Γ\G is compact, G is uniform or cocompact ; otherwise it is

non-uniform. Selberg’s Lemma [43] states that if G is a matrix group, then Γ

contains a finite-index subgroup Γ′ with no finite-order elements, so that Γ′\G
is a manifold.

In our case, the Lie group G = PSL(2,R) acts on the hyperbolic plane

by isometries, and lattices Γ in PSL(2,R) yield tilings of H1
C, as illustrated in

Figure 4.3. Indeed, fix a point p0 ∈ H1
C and consider the orbit Γ · p0 of p0

under Γ. Consider the “nearest integer” map p 7→ [p] assigning to each point

the closest point in the orbit Γ · p0 (if the closest point is unique). The fibers

of [·] are called Dirichlet fundamental domains for the action of Γ on H1
C, and

the collection of disjoint tiles is invariant under the action of Γ. Note that the

boundaries of the tiles are exactly the places where [·] is not uniquely defined.

Figure 4.3: Tilings associated with co-compact (left) and non-uniform (right)
lattices.

One obtains a stronger relationship between the lattice Γ and the space on

which it acts by giving Γ a metric. This is provided for finitely generated groups

by the word metric:
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Definition 4.2.1. Let Γ be a group generated by a finite set of elements Γ0.

The Cayley graph of Γ with respect to Γ0 is the graph whose vertices are exactly

the elements of Γ and for which one has an edge between γ1 and γ2 if either

γ−1
1 γ2 ∈ Γ0 or γ−1

2 γ1 ∈ Γ0. Assigning each edge of the Cayley graph unit

distance, one obtains a metric graph and in particular the word metric on the

vertices Γ.

The word metric a priori depends on the choice of generating set. However,

any two word metrics are quasi-isometrically equivalent. That is, the iden-

tity map id : (Γ, d1) → (Γ, d2) distorts distances by a bounded amount (see

Definition 2.2.5). Thus, we think of the word metric as defined only up to

quasi-isometry.

The use of the word metric on co-compact lattices is justified by the Milnor–

Švarc Theorem. Recall that a group acts geometrically on a metric space if the

action is proper, free, and by isometries.

Theorem 4.2.2 (Milnor–Švarc [4] p. 140). Let Γ be a group acting geometrically

and co-compactly on a metric space X. Then Γ is finitely generated and quasi-

isometric to X.

Sketch of proof. Fix x0 ∈ X and let [·] be the associated “nearest-integer” map

from X to the orbit of Γ (or equivalently to Γ itself). Let K be the Dirichlet

region containing x0. By co-compactness, the closure of K is compact. By

properness, K has finitely many neighbors, say γiK. One shows that the ele-

ments γi generate Γ and furthermore that the adjacency graph of the tiling is

the Cayley graph associated to these generators. Thus, one has interpreted the

map x 7→ [x] as a quasi-isometry from X to Γ.

Figure 4.4: The group SL(2,R) acting on a truncated space given by removing
horoballs from H1

C.

In the case of a non-uniform lattice Γ, the story is more complicated. One

can once again define the Dirichlet region as the set of points closer to a base

point x0 than to other points in its orbit Γ ·x0. However, this region is no longer

compact, as it contains “cusps” escaping towards the circle bounding H1
C (see

Figure 4.3).
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The following theorem can be proven directly in H1
C, but becomes harder in

higher dimensions:

Theorem 4.2.3 (Thick-Thin Decomposition [23, 2]). Let Γ be a lattice in

Isom(H), where H is a non-compact rank one symmetric space. Then there

exists a collection of disjoint horoballs B such that:

1. B is invariant under Γ,

2. Γ acts co-compactly on H\ ∪ B,

3. every parabolic element of Γ preserves a unique horoball in B.

In the case of H1
C, Theorem 4.2.3 states that every non-uniform lattice looks

somewhat like Figure 4.4. Namely, one is able to find circles tangent to the

boundary (called the horocycles or horospheres, with horoball interior) that can

be removed to obtain a new metric space, the truncated space H1
C\ ∪ B, on

which Γ acts geometrically and co-compactly. One concludes that Γ is finitely

generated and quasi-isometric to the truncated space.

Theorem 4.2.3 is known as the Thick-Thin Decomposition since it provides

the following description of the quotient Γ\H: it consists of the thick part –

namely the compact quotient of the truncated space H\ ∪ B by Γ – and the

thin part – one or more cups formed by taking the quotient of a horoball by a

subgroup of Γ.

Note that every non-identity element of Γ fixing a horoball is parabolic. That

is, it fixes exactly one point of H ∪ ∂H and the fixed point is in the boundary.

The last part of Theorem 4.2.3 states that only the horoballs in B are interesting

when Γ is concerned: every parabolic element of Γ fixes one of the horoballs B.

The proof of Theorem 4.2.3 is non-trivial. For H1
C it can be shown directly

using hyperbolic geometry, but in the more general case it relies on the Margulis

lemma. Informally, the result states that if some collection Γ0 of isometries of

H do not move some point very far and yet generate a discrete group, then the

resulting group cannot be very complicated.

Theorem 4.2.4 (Margulis Lemma [2]). Let H be a non-compact rank-one sym-

metric space and Γ0 a finite subset of Isom(H). Then there exists a Margulis

constant ε = ε(H) depending only on H such that if for some point x one has

that d(x, γx) < ε for every γ ∈ Γ0 and furthermore Γ0 generates a discrete group

Γ, then Γ is virtually nilpotent.

4.3 Real hyperbolic space and horospherical

coordinates

In §4.1, we built the hyperbolic plane H1
C by viewing the unit disk as a subset

of CP1 and giving it a metric that is invariant under linear fractional transfor-
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mations. We now build the real hyperbolic plane H2
R by viewing the unit disk

as a subset of RP2. By a coincidence, the two spaces H1
C and H2

R are isometric.

Recall that RP2 is the space of lines through the origin in R3. A point in RP2

has homogeneous coordinates (x1 : x2 : x3), well-defined up to rescaling. One

embeds R2 ↪→ RP2 by sending (x, y) to (x : y : 1). The linear transformations

GL(3,R) induce the “linear fractional” transformations PGL(3,R) of RP2.

Via the above embedding of R2 ↪→ RP2, the unit disk in R2 becomes the set

of lines within the solid cone x2 +y2− z2 < 0. The set of linear transformations

preserving this cone is the (Lorentz) orthogonal group O(2, 1). Indeed, these

are exactly the matrices preserving the quadratic form

〈(x1, y1, z1), (x2, y2, z2)〉 = x1x2 + y1y2 − z1z2.

We have thus provided the unit disk with a group PO(2, 1) of transformations.

Because the stabilizer of the origin is exactly the orthogonal group O(2), we

are able to find a metric for which these transformations are isometries: there

exists a PO(2, 1)-invariant inner product on the unit disk that agrees with the

standard inner product at the origin.

The resulting space is the Klein model of the hyperbolic plane (we denote

it H2
R), and is isometric to the Poincare unit disk model of H1

C via the transfor-

mation

(x, y) 7→ 2(x+ iy)

x2 + y2 + 1
. (4.3.1)

Remark 4.3.1. The derivative of (4.3.1) is not the identity at the origin. This

accounts for the different normalizations: at the origin the line element of the

Klein model is ds2
K(0) = dx2 + dy2, while for the Poincare model we have

ds2
P (0) = 4(dx2 + dy2).

We now redraw figures from §4.2 in the real model. The geodesics in H2
R

are, in fact, straight lines, but the metric is not conformally equivalent to that

of the plane.

Figure 4.5: Co-compact and non-uniform lattices in H2
R, and the associated

truncated space. Compare Figures 4.3 and 4.4.

In §4.2, we defined horospheres in H1
C as circles tangent to the boundary of
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H1
C. The definition is not intrinsic and furthermore not applicable to H2

R. We

provide two more general definitions, the second of which leads to the notion of

horospherical coordinates.

Definition 4.3.2. Let X be a metric space. A horosphere is a limit S∞ =

limr→∞ Si, where the Si are metric spheres with radius increasing to infinity

(with no restriction on centers), and the limit is “Hausdorff convergence on

compacts”. That is, for each compact K ⊂ X, the Hausdorff distance between

Si ∩K and S∞ ∩K is required to converge to zero. A horoball is likewise the

limit of arbitrarily large balls in X, and is bounded by a horosphere. (Of course,

the trivial limits ∅ and X are excluded in both definitions.)

Remark 4.3.3. In Euclidean space Rn, all horospheres are flat embeddings

of Rn−1. To see this, think of inflating a balloon for infinite time, so that it

converges to the tangent plane at the point where the air is coming in.

In non-compact rank-one symmetric spaces such as H2
R, one can again think

of horospheres as over-inflated balloons. Indeed, every horosphere is constructed

by holding on to a sphere at one point and letting the other end go off to infinity

along a geodesic. The following definition is equivalent to Definition 4.3.2:

Definition 4.3.4. Let X be a non-compact rank-one symmetric space and

ξ ∈ ∂X a point on the boundary. Denote by Gξ the group of isometries of X

fixing only ξ (as well as the identity mapping). This is the parabolic subgroup

associated to ξ.

A horosphere is the orbit of some point x ∈ X under the action of Gξ, for

some ξ ∈ ∂X. Let γx,ξ be a geodesic ray from x to ξ. A horoball is the union

tg∈Gξg · γx,ξ.

Definiton 4.3.4 allows us to define a new coordinate system for the space X

(cf. the case of Rn below and also Figure 4.7.4):

Definition 4.3.5. Fix a point ξ ∈ ∂X and a geodesic γξ(s) ending in ξ. For

each s ∈ R, Gξ · γξ(s) is a horosphere, while for each g ∈ Gξ, g · γξ is a geodesic.

In particular, the map Gξ×R+ → X given by (gξ, y) 7→ gξ ·γξ(log y) is bijective

and provides the horospherical coordinates on X.

Example 4.3.6. Definitions 4.3.4 and 4.3.4 also work for Rn if we think of

∂Rn if we take ∂Rn to be the set of geodesic rays starting at the origin, or

equivalently the unit vectors at the origin. For a unit vector ~v ∈ ∂Rn, the

parabolic subgroup G~v is the subset of Isom(Rn) that preserves ~v and no other

vector – i.e. the translations perpendicular to ~v. For a point x ∈ Rn, the orbit

G~v ·x is then a hyperplane perpendicular to ~v. The half-space on the ~v direction

of the hyperplane is a horoball, and is foliated by geodesic rays in the ~v direction.

We thus obtain for n = 2 a somewhat unnatural representation of the Euclidean
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plane as the upper half-plane with line element

ds2 = dx2 +
dy2

y2
.

Note that in Rn the complement of a horoball is also a horoball; this is not true

for hyperbolic spaces.

Example 4.3.7. In the case of the hyperbolic plane, parabolic subgroups are

isomorphic to R, and choosing an identification of Gξ with R turns the horo-

spherical coordinates into the upper half-plane model, with ξ sent off to infinity.

Example 4.3.8. The construction of H2
R as the unit disk with a PO(2, 1)-

invariant metric immediately generalizes to the construction of HnR as the unit

ball in Rn ⊂ RPn+1 with a PO(n, 1)-invariant metric. As for H2
R, the geodesics

of HnR take the form of straight lines, and the isometries correspond precisely to

PO(n, 1).

There does not exist a complex model of HnR for n ≥ 3. One can, however,

use horospherical coordinates to write HnR as the upper half-space Rn−1 × R+

with the metric

ds2 =
dx2

1 + . . .+ dx2
n

x2
n

.

Alternately, one may use the mapping

(x1, . . . , xn) 7→ 2

x2
1 + . . .+ x2

n + 1
(x1, . . . , xn)

to turn the Klein model of HnR into a Poincare ball model, whose geodesics are

the familiar circles perpendicular to the boundary.

4.4 Complex hyperbolic space

We are now ready to work with the complex hyperbolic plane H2
C (for additional

details, see [16]). The construction is identical to that of H2
R, except that one

works with complex coordinates. Namely, H2
C is the unit ball in C2 ↪→ CP2,

with a metric that is invariant under the group of automorphisms of CP2 that

preserves the unit ball.

The unit ball in C2 is defined by the equation ‖(z1, z2)‖ < 1, where ‖(z1, z2)‖
is given by the Hermitian form 〈(z1, z2), (w1, w2)〉 = z1w1 + z2w2. Using the

standard embedding (z1, z2) 7→ (z1 : z2 : 1) of C2 into CP2, one exchanges the

condition ‖(z1, z2)‖ < 1 for the homogeneous condition

|z1|2 + |z2|2 − |z3|2 < 0,

so that, as in the real case, the unit ball in C2 is the projectivization of a cone

in C3. Likewise, the linear fractional transformations preserving the unit ball
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coincide with the projectivization PU(2, 1) of the unitary group U(2, 1) of linear

transformations of C3 that preserve the above form.

We would now like to give the unit ball a metric for which PU(2, 1) is

an isometry group. The subgroup of PU(2, 1) fixing the origin is the group

U(2), a subgroup of O(2). We may therefore choose, at the origin, ds2(0) =

4(dx2
1 + · · · + dx2

4) and extend it to a PU(2, 1)-invariant inner product on the

full ball. With this metric, the ball becomes the complex hyperbolic space H2
C.

An analogous construction with 2 replaced by n provides us with complex

hyperbolic space HnC.

Remark 4.4.1. One can go further and define, in addition to HnR and HnC,

analogous spaces over the quaternions, and the octonionic plane. Together,

these form the non-compact rank-one symmetric spaces.

Remark 4.4.2. Note that the normalization ds2(0) = 4(dx2
1 + · · ·+dx2

4) agrees

with the Poincare model, but not with the Klein model. As a result, the subspace

{z2 = 0} ⊂ H2
C is isometric to H1

C, but the subspace {Re(z1) = Re(z2) = 0} ⊂
H2

C is isometric to a rescaled version of H2
R. Each of these is a totally geodesic

subspace, the first with sectional curvature -1, and the second with sectional

curvature -4. We thus have that H2
C has pinched curvature: every value in the

range [−4,−1] is realized.

Recall from Definition 4.3.5 that the horospherical coordinates for HnC are

defined by a diffeomorphism from Gξ × R+ to HnC, where Gξ is the group of

isometries of HnC fixing only the point ξ in the boundary of HnC.

Lemma 4.4.3. Let ξ ∈ ∂HnC be a point on the boundary of HnC . Then the

parabolic subgroup Gξ is isomorphic to Φn−1.

Proof. Any two Hermitian forms of signature (n, 1) on Cn+1 are related by a

linear transformation. We can therefore switch from the Hermitian form |z1|2 +

. . .+ |zn|2−|zn+1|2 to the Hermitian form given by the matrix J3 (see Definition

2.7.2). The ball becomes the “paraboloid” −2Re(zn) = |z1|2 + . . . + |zn−1|2

(Figure 2.5), and we may further assume that the point ξ is mapped to the

point “at infinity” with homogeneous coordinates (0 : . . . : 0 : −1).

One then sees the Siegel unitary model of the Heisenberg group within Gξ,

and furthermore that these are the only elements of Gξ.

Corollary 4.4.4. The horospherical model of HnC is given by Φn−1 × R+.

The geometry of the horospherical model of HnC is not as clear-cut as that

of the upper half-space models of HnR. However, we can still make some obser-

vations.

Lemma 4.4.5. The isometries of the horospherical model of HnC = Φn−1 ×R+

are generated by the transformations

• (p, s) 7→ (f(p), s), for f ∈ Isom(Φn−1),
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• (p, s) 7→ (δrp, rs), for r ∈ R+,

where Isom(Φn−1) is the isometry group of Φn−1 with respect to any of the

metrics we have considered.

Proof. One shows using an explicit form of the distance function on HnC that

every isometry of HnC is either an element of PU(n, 1), or the same followed

by complex conjugation. The isometries of the horospherical model are those

isometries that preserve the point in ∂HnC used to define the model. Comparing

the classification of these isometries with a classification of the isometries of

Φn−1 in Proposition 2.4.1 yields the result (note that the isometries of the

Riemannian Φn−1 are again those listed in Proposition 2.4.1).

Based on Lemma 4.4.5, we can write down a description of the Riemannian

metric on the horospherical model.

Lemma 4.4.6. The restriction of the Riemannian metric tensor to each horo-

sphere Φn−1 × {s} provides a Riemannian metric gs on Φn−1 = Φn−1 × {s}.
Letting s → 0, the rescaled metric s−1gs limits to the sub-Riemannian metric

gsR; indeed, the metrics s−1ds are the Riemannian penalty metrics (Definition

2.2.12).

4.5 Gromov hyperbolicity and quasi-isometries

We defined HnC as the unit ball with a PU(n, 1)-invariant metric and have de-

scribed its horospherical model as Φn−1 × R+. Both spaces come with natural

boundaries, respectively the sphere S2n−1 and the Heisenberg group Φn−1×{0}.
How intrinsic are these boundaries? A straightforward answer for the ball model

is given by the following lemma; compare Example 4.3.6.

Lemma 4.5.1. Let X be a non-compact rank-one symmetric space viewed in

its ball model. Fix x0 ∈ X. Then the exponential map expx0
: Tx0

X → X is a

diffeomorphism. Furthermore, expx0
induces a bijection between unit vectors in

Tx0
X and points in ∂X by looking at the endpoint of the corresponding geodesic

ray.

Proof. Consider first the case x0 = 0. By symmetry and uniqueness of geodesics

(the latter given by negative curvature) one sees that the geodesics emanating

from x0 are precisely line segments joining x0 and a point on ∂X. Furthermore,

such a line segment is immediately constructed to any point in ∂X. For x0 6= 0,

one reduces to the previous case by an isometry. By construction, the isometry

is given by a global homeomorphism of the whole ambient space, in particular

the closure of the ball. Thus, one has the desired pencil of curves emanating

from x0 and terminating at each point on the boundary.
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Lemma 4.5.1 allows us to identify the boundary of the ball and the unit

tangent bundle at any point x0. The identification is made via geodesics starting

at x0, and this point of view allows one to work with the boundary in a more

general setting, namely that of Gromov hyperbolic spaces. We start by defining

geodesic Gromov-hyperbolic spaces.

Definition 4.5.2. A geodesic metric space is δ-hyperbolic, for δ ≥ 0, if its

triangles are δ-thin. That is, given three points a, b, c connected by geodesics

[a, b], [b, c], [a, c], the δ-neighborhood of [a, b] ∪ [b, c] contains [a, c]. A geodesic

space is (Gromov) hyperbolic if it is δ-hyperbolic for some δ.

Complete Riemannian manifolds of negative sectional curvature bounded

away from zero, including the non-compact rank-one symmetric spaces, are

Gromov hyperbolic. The hyperbolicity condition is both robust and powerful,

as is demonstrated by the following two lemmas:

Lemma 4.5.3. Let f : X → Y be a quasi-isometry between geodesic spaces.

Then X is hyperbolic if and only if Y is hyperbolic.

Remark 4.5.4. In Definition 4.6.1 we will broaden the definition of hyperbolic

spaces to non-geodesic metric spaces. Note, however, that the condition in

Lemma 4.5.3 that X and Y are geodesic can be loosened slightly, but not entirely

removed. For example, let X be the union of the positive coordinate axes in

R2 with the restricted metric function, and Y = R. While the two spaces are

quasi-isometric, only the second is Gromov-hyperbolic.

Definition 4.5.5. Two sets are bounded (Hausdorff) distance from each other

if each set is contained in a bounded neighborhood of the other. The minimum

size of the neighborhood is the Hausdorff distance (and satisfies the distance

axioms if both sets are compact).

Lemma 4.5.6. Let f : R → X be a quasi-isometric embedding from R into

a proper geodesic hyperbolic space X (a quasi-geodesic). Then there exists a

geodesic F : R → X such that F (R) and f(R) are bounded distance from each

other.

Lemma 4.5.6 allows us to define the boundary ∂X of a Gromov-hyperbolic

space in a way that is quasi-isometry invariant and easy to compute.

Definition 4.5.7. Let X be a geodesic Gromov-hyperbolic space. Then ∂X

is the space of equivalence classes of quasi-geodesic rays in X, with two quasi-

geodesic rays considered equivalent if they are bounded distance from each other.

Given a quasi-isometry f : X → Y between two hyperbolic spaces one

immediately obtains a map on the set of equivalence classes of quasi-geodesics.

We denote this by ∂f : ∂X → ∂Y .

Remark 4.5.8. While the definition of the boundary via quasi-geodesic rays

makes sense in non-hyperbolic spaces, it is not as useful there. For example,
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R2 contains bounded quasi-geodesic rays, and one would prefer to not think of

them as going off to infinity. The definition also does not capture the desired

intuition for the truncated spaces (seen in Figure 4.4), which are bounded by

horospheres isometric to Euclidean space.

Definition 4.5.7 defines the boundary ∂X as a set. The standard compact-

open topology on quasi-geodesics induces a topology on the boundary. We start

with the following critical fact about quasi-isometries of hyperbolic spaces:

Theorem 4.5.9. Let f : X → Y be a quasi-isometric embedding of geodesic

Gromov hyperbolic spaces. The induced boundary map ∂f : ∂X → ∂Y is then

a continuous embedding. If f is furthermore a quasi-isometry, then ∂f is a

homeomorphism.

Proof. The continuity is immediate from the use of the compact-open topology.

The injectivity follows from the definition of equivalence: if two geodesic rays

are not bounded distance in the original space, they cannot be bounded distance

after a quasi-isometric embedding is applied to them. For quasi-isometries, a

rough inverse provides existence and continuity of (∂f)−1.

The next lemma follows directly from the proof of Lemma 4.5.1:

Lemma 4.5.10. Topologically, the boundary at infinity of HnR is Sn−1, and the

boundary at infinity of HnC is S2n−1.

4.6 Quasi-isometries and quasi-symmetries

Theorem 4.5.9 states that every quasi-isometric embedding f : X → Y of Gro-

mov hyperbolic geodesic spaces induces a continuous map on the boundary.

Not every continuous map F : ∂X → ∂Y arises in this manner. To state this

more precisely, we must put a family of metrics on the boundaries. It is conve-

nient to simultaneously extend the class of Gromov hyperbolic spaces to include

non-geodesic spaces.

Definition 4.6.1. Let X be a metric space (not necessarily geodesic). The

Gromov product provides a quantitative measure of the excess of the triangle

inequality:

(x, y)z =
1

2
(|x− z|+ |y − z| − |x− y|) ≥ 0.

The space X is Gromov hyperbolic if the Gromov product satisfies a further

inequality for some δ:

(x, y)w ≥ min{(x, z)w, (z, y)w} − δ.
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Remark 4.6.2. For geodesics spaces, the two definitions of hyperbolicity agree.

While the specific values of δ for the definitions don’t match up, each can be com-

puted in terms of the other. For details, see [1]. Note, however, for non-geodesic

spaces, hyperbolicity is not generally passed down through quasi-isometry (see

Remark 4.5.4).

Let ξ, η ∈ ∂X, and z ∈ X. One extends the Gromov product by defining

(ξ, η)z := lim inf(ξ(t), η(t))z,

where we make use of the identification of ξ and η with quasi-geodesic rays. A

metric on ∂X is provided by the following lemma:

Lemma 4.6.3. Let X be a hyperbolic space and z ∈ X. Fix ε > 0 and define

dε(ξ, η) = e−ε(ξ,η)z .

If X is hyperbolic, then there exists an ε0 such that for ε ≤ ε0 the function dε is

bi-Lipschitz to a metric.

The metrics on ∂X provided by Lemma 4.6.3 fall into the broader class of a

visual metrics, for which a more robust equivalence is allowed.

Definition 4.6.4. Let X,Y be metric spaces (not necessarily hyperbolic). A

topological embedding f : X → Y is a η-quasi-symmetric embedding, for an

increasing bijection η : R+ → R+, if one has for every x, y, z ∈ X that

|fx− fy|
|fx− fz|

≤ η
(
x− y
x− z

)
.

If f is furthermore a homeomorphism, we refer to it as a quasi-symmetry.

The visual metrics provided by Lemma 4.6.3 are all quasi-symmetrically

equivalent. This leads to a broader collection of metrics on ∂X:

Definition 4.6.5. A metric on ∂X is in the conformal gauge if it is quasi-

symmetrically equivalent to a metric provided by Lemma 4.6.3.

In many spaces, including Rn and Φn, quasi-conformal and quasi-symmetric

maps coincide. More generally, quasi-conformality is a local version of quasi-

symmetry. In particular, quasi-symmetries must preserve the boundedness of

a space, so that for example stereographic projection is 1-quasi-conformal but

not quasi-symmetric.

The following is a classical result:

Theorem 4.6.6. Let f : X → Y be a quasi-isometric embedding. The ∂f :

∂X → ∂Y is a quasi-symmetric embedding, with respect to the conformal gauge.

Furthermore, if f is a quasi-isometry, ∂f is a quasi-symmetry.

The converse is provided by multiple constructions, e.g. Bonk–Schramm [3].
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Theorem 4.6.7. Let F : ∂X → ∂Y be a quasi-symmetry. Then there exists a

quasi-isometry f : X → Y such that ∂f = F .

A related question is whether every space serves as the boundary of a hy-

perbolic space. Bonk–Schramm answer this affirmatively for complete bounded

spaces via the following construction (for unbounded complete spaces serving

as parabolic boundaries, see the more intricate construction in [6]).

Theorem 4.6.8. Let X be a complete metric space of diameter D <∞. Then

X = ∂Y for a hyperbolic space Y = X × (0, D) with metric

|(x1, t1)− (x2, t2)| = 2 log

(
|x1 − x2|+ max{t1, t2}√

t1t2

)
.

We thus have that, up to a quasi-isometry, every hyperbolic space is given by

the construction in Theorem 4.6.8. One proves Theorem 4.6.7 by interpreting a

point (x, t) ∈ Y as the ball B(x, t) in X having center x and radius t.

4.7 Quasi-isometric rigidity and

quasi-conformal extension

Given an isometry f between two metric spaces, it is easy enough to perturb

f on a bounded region to turn it into a (L,C)-quasi-isometry with L 6= 1

and C 6= 0. However, this tells us nothing about the structure of the spaces.

Under what conditions on the metric spaces do “real” quasi-isometries not exist

between them? In other words, when can one perturb every quasi-isometry to

force L = 1 or C = 0?

Theorem 4.7.1 (Pansu [38]). Let X be a quaternionic hyperbolic space or the

octonionic hyperbolic plane. Then every quasi-isometry f : X → X is bounded

distance from an isometry.

Sketch of proof. The result follows from Pansu’s differentiability theorem 3.6.4

and its Corollary 3.6.6. Namely, Pansu extends the quasi-isometry f to a quasi-

conformal map ∂f : ∂X → ∂X, and shows that every quasi-conformal map

on the boundary is in fact conformal. Since every conformal map is a Möbius

transformation, we immediately obtain an isometry F : X → X satisfying

∂F = ∂f . It then follows from Lemma 4.5.6 that F and f are some bounded

distance K apart, that is for every x ∈ X we have |f(x)− F (x)| < K <∞.

In HnR and HnC, a similar argument is unavailable. Indeed, there are many

quasi-conformal self-mappings of Rn−1 and Φn−1 (see Theorem 3.4.10), and

therefore many non-trivial quasi-isometries of HnR and HnC. One method for

generating quasi-conformal mappings of Rn was provided by Tukia–Väisälä:
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Theorem 4.7.2 (Tukia–Väisälä [49]). Let f : Rn−1 → Rn−1 be a quasi-

conformal mapping (or quasi-symmetric if n = 2). Then there exists a quasi-

conformal mapping F : Rn → Rn such that F |Rn−1 = f .

The essential step in the proof of Theorem 4.7.2 can be rephrased as:

Theorem 4.7.3 (Tukia–Väisälä [49]). Let f : Rn−1 → Rn−1 be a quasi-

conformal mapping (or quasi-symmetric if n = 2). Then there exists a bi-

Lipschitz mapping F : HnR → HnR such that ∂F = f (in the upper half-plane

model).

Rephrasing further, Theorem 4.7.3 states that every quasi-isometry of HnR is

bounded distance from a bi-Lipschitz mapping. In this interpretation, Theorem

4.7.3 was extended to two classes of spaces including HnC in [51] and [30]. We

state our phrasing of the result for HnC:

Theorem 4.7.4 (Lukyanenko [30], cf. Xie [51]). Let f : Φn−1 → Φn−1 be quasi-

conformal, for n 6= 2. Then there exists a bi-Lipschitz map F : HnC → HnC such

that in the horospherical model one has ∂F = f .

Sketch of proof. Recall that in horospherical coordinates we have HnC = Φn−1×
R+. We say that a lifting method is a way of assigning to each homeomorphism

f : Φn−1 → Φn−1 a homeomorphism f̂ : HnC → HnC satisfying the additional

properties:

1. Extension: f̂ extends continuously to Φn−1 × {0} as f ,

2. Continuity: f 7→ f̂ is continuous in the compact-open topology,

3. Equivariance: for any homotheties g1, g2 of Φn−1, we have

̂g1 ◦ f ◦ g2 = g1 ◦ f̂ ◦ g2,

where on the right the maps g1 and g2 are viewed as isometries of HnC.

Example 4.7.5. The Tukia–Väisälä lifting method views a point (p, r) ∈
Φn−1 × R+ as a ball B(p, r) of radius r in Φn−1 centered at p. One then

defines f̂(p, r) = (f(p), r′), where r′ is the inner radius of fB(p, r).

It will follow from the proof that any lifting method sends quasi-symmetries

to quasi-isometries, largely due to the following lemma:

Lemma 4.7.6 (Corollary 10.30 of [18]). Fix a control function η and let F be

a family of η-quasi-symmetric embeddings of X in Y . Assume that Y is proper

and there is x0 ∈ X and y0 ∈ Y such that f(x0) = y0 for each f ∈ F . If

C−1 ≤ |f(a)− f(b)| ≤ C

for some C ≥ 1, for some pair of points a, b ∈ X and for all f ∈ F , then F is

sequentially compact: every sequence in F subconverges to an element of F .
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Returning to the theorem, we have a quasi-conformal map f and a lift f̂ ,

which is now a homeomorphism of HnC, but might not be bi-Lipschitz, perhaps

not even locally. To iron out the wrinkles in f̂ , we invoke

Theorem 4.7.7 (PL approximation [40]). For n 6= 4, every homeomorphism

of Rn to itself is arbitrarily closely approximated by a piecewise-linear (hence

locally bi-Lipschitz) homeomorphism.

Remark 4.7.8. Counter-examples exist in dimension 4.

We are thus able to adjust f̂ to a bi-Lipschitz mapping on any compact

piece of HnC. We start by breaking HnC up into pieces. More precisely, we

create a Dyadic-style decomposition of HnC by starting with a Strichartz tile KS

(cf. Theorem 2.1.7 and Figures 2.6 and 4.7.4), and turning it into a higher-

dimensional tile

K = KS × [1, 2] ⊂ Φn−1 × R+ = HnC.

Let Γα be a set of isometries of HnC such that the tiles Γα ·K tile HnC as in Figure

4.7.4. By abuse of notation, we also think of Γα as a set of homotheties of Φn−1.

Note that Γα is not a group.

Figure 4.6: Dyadic decomposition of H2
R. An analogous construction is available

in HnC.

We would now like to iron out the lifting f̂ on each tile γK, for γ ∈ Γα. How-

ever, if we invoke Theorem 4.7.7 on two adjacent tiles, the resulting straight-

enings need not agree on the border. This problem is resolved by invoking

Sullivan’s deep Bi-Lipschitz Extension Theorem, which essentially states that

at some cost it is possible to reconcile two bi-Lipschitz functions defined on

overlapping domains (see [45, 48, 49]).

We are thus able to take our lifting f̂ and replace it, tile by tile, with a

bi-Lipschitz mapping. Unfortunately, as we iron f̂ on infinitely many tiles, we

lose control of the bi-Lipschitz constant. It is at this point that we invoke

both the combinatorics of our tiling and the fact that our initial map f was a

quasi-symmetry.

Note that instead of correcting f̂ on each tile γK, we can correct f ◦ γ−1

on the tile K. Indeed, Lemma 4.7.6 implies that the mappings {f ◦ γ−1|K :

γ ∈ Γα} form a relatively compact family. That is, for each ε there is a finite
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collection of mappings f1, . . . , fN such that we can “model” any mapping f ◦
γ−1|K by one of the f1, . . . , fN . We apply Theorem 4.7.7 only to these mappings,

obtaining corresponding mappings f ′1, . . . , f
′
N .

Consider now a maximal mutually disjoint collection of tiles γK. For each

γK, consider f ◦ γ−1|K and pick the closest approximation fj ∈ {f1, . . . , fN}.
Approximate f |γK by fj ◦γ. We have thus straightened f out on infinitely many

tiles while using Theorem 4.7.7 only finitely many times.

Figure 4.7: A coloring of the dyadic decomposition, similar to the coloring of
HnC used in the proof of Theorem 4.7.4.

Consider next another mutually disjoint collection of tiles γK, also disjoint

from the previous collection. We have to approximate f on each tile γK and

also reconcile the approximation with the previous paragraph. Again, up to

some error, we see only finitely many configurations and have to invoke PL

approximation and Sullivan Extension only finitely many times.

One shows that the adjacency graph of the dyadic tiling is finitely colorable

(Figure 4.7) so that a finite number of iterations of the previous paragraph

completes the approximation of f on the full space HnC.

We thus have a uniformly-locally-bi-Lipschitz map F that was obtained from

f̂ by arbitrarily small perturbations. Because f̂ is a homeomorphism, a suffi-

ciently close approximate F must, in fact, be bi-Lipschitz.

4.8 Co-Hopficity of co-compact lattices

We now return to geometric group theory. Let Γ be a lattice in Isom(H) for

a non-compact rank one symmetric space, say H2
R. We saw in §4.2 that Γ

must then be finitely generated and quasi-isometric to either all of H if Γ\H is

compact, or to a truncated space H\ ∪ B if Γ is non-uniform.

Definition 4.8.1. Let Γ be a group. One says that Γ is co-Hopf if every

injective homomorphism f : Γ ↪→ Γ is in fact an isomorphism. Alternately,

Γ is almost co-Hopf if every injective homomorphism f : Γ ↪→ Γ satisfies [Γ :

f(Γ)] <∞.

Example 4.8.2. We provide some examples of co-Hopficity:
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• Every finite group is co-Hopf.

• The group (R,+) is co-Hopf. Indeed, every homomorphism is either an

isomorphism or the trivial map.

• The group (Z,+) is not co-Hopf, as one has the embedding f(x) = 2x.

However, it is almost co-Hopf: for any non-trivial f : Z ↪→ Z, we have

[Z : f(Z)] = |f(1)|.

• More generally, the free group Fn is not co-Hopf. A generic set of elements

g1, g2, . . . , gk ∈ Fn generates a proper free subgroup of Fn isomorphic to

Fk. For n ≥ 2, Fn is not even almost co-Hopf: the map f : Fn ↪→ Fn that

doubles the generators has infinite co-dimension.

We would now like to prove:

Theorem 4.8.3. Let H be a non-compact rank one symmetric space and Γ ⊂
Isom(H) a lattice. If Γ is co-compact or if H 6= H2

R, then Γ is almost co-Hopf.

In this section, we provide a proof of the co-compact case. In §4.9 we sketch

the proof of the non-uniform case. Figure 4.8 shows that F2 is a non-uniform

lattice in Isom(H2
R) justifying the constraints in Theorem 4.8.3.

Figure 4.8: The free group on two generators is a lattice in Isom(H2
R).

Before proving the co-compact case of Theorem 4.8.3, we rephrase the as-

sertion in terms of geometry.

Definition 4.8.4. A space X is quasi-isometrically co-Hopf if every quasi-

isometric embedding f : X ↪→ X is, in fact, a quasi-isometry.

Lemma 4.8.5. Let Γ be a finitely generated group. If Γ is quasi-isometrically

co-Hopf, then it is almost co-Hopf.

Proof. Let f : Γ ↪→ Γ be an injective homomorphism. Note that distances in Γ

are measured along the edges of the Cayley graph for some generating set. Now,
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for each generator γ, the image f(γ) becomes a finite word in the generators,

i.e. the distance from f(γ) to the identity is bounded. Thus, any path in the

Cayley graph of Γ is distorted by only a bounded amount. That is, f is a

quasi-isometric embedding. By the assumed quasi-isometric co-Hopficity, f is

furthermore a quasi-isometry and every point in Γ is some bounded distance R

from f(Γ).

Consider now the coset space Γ/f(Γ). For each coset, we can choose a

representative that is within R of some point of γ ∈ f(Γ) and then translate

it by γ−1 so that it is within R of the identity. The resulting points have to

be disjoint, and there are finitely many of them since the ball of radius R in

the Cayley graph of Γ contains a finite number of vertices. Thus, Γ is almost

co-Hopf. Note that if we are able to take R = 0, then Γ is co-Hopf.

We now provide a proof of the following classical result:

Theorem 4.8.6. Let Γ be a co-compact lattice in Isom(H), with H a non-

compact rank one symmetric space. Then Γ is almost co-Hopf.

Proof. By Lemma 4.8.5 it suffices to prove that Γ is quasi-isometrically co-Hopf.

Note that quasi-isometric co-Hopficity is a quasi-isometry invariant, so that by

Theorem 4.2.2 it suffices to prove that H is quasi-isometrically co-Hopf.

Consider now a quasi-isometric embedding f : H → H and let n+1 = dimH.

We have an induced topological embedding ∂f : ∂H → ∂H. That is, we have

an injective continuous map of Sn to itself. If f is not a homeomorphism, then

it misses a point, so that we would have an injective continuous map of Sn into

Rn, but this is impossible.

We thus have that ∂f : ∂H → ∂H is a homeomorphism, indeed a quasi-

symmetry by Theorem 4.6.6. Let F−1 be a quasi-isometry of H satisfying

∂(F−1) = (∂f)−1. We then have that F−1 ◦ f is a quasi-isometric embedding

whose boundary map is the identity. But then F−1 ◦ f is bounded distance

from the identity, and in particular itself a quasi-isometry. Therefore, f was a

quasi-isometry in the first place.

4.9 Co-Hopficity of non-uniform lattices

In this section, we sketch a proof of the non-uniform case of Theorem 4.8.3. The

co-compact case is given by Theorem 4.8.6. Analogously to Theorem 4.8.6, we

phrase the non-uniform case as a geometric statement. For full details, see [22].

Theorem 4.9.1 (Kapovich–Lukyanenko [22]). Let Γ be a non-uniform lattice

in Isom(H) for H 6= H2
R a non-compact rank-one symmetric space. Then every

quasi-isometric embedding f : Γ ↪→ Γ is in fact a quasi-isometry. In particular,

as a group Γ is almost co-Hopf.
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The proof of Theorem 4.9.1 starts by transitioning to a statement about

truncated spaces. Recall from Theorem 4.2.3 that every non-uniform lattice is

quasi-isometric to a truncated space H\ ∪ B, where B is a family of pairwise

disjoint horoballs invariant under Γ. Thus, Theorem 4.9.1 is equivalent to saying

that a quasi-isometric embedding of a symmetric truncated space to itself is

always a quasi-isometry (note that we don’t claim this for all truncated spaces).

Because the large-scale geometry of truncated spaces is not well-understood

(in particular, there is no meaningful notion of boundary at infinity), we make

use of the large-scale geometry of H instead. Namely, we use the following

lemma of Richard Schwartz:

Lemma 4.9.2 (R. Schwartz [41]). Let X be a horosphere in a rank-one sym-

metric space H 6= H2
R with its Riemannian metric ( not the subspace metric),

and f : X → H\ ∪ B a quasi-isometric embedding into a truncated space. Then

there is a constant C depending only on H such that f(X) is within distance C

of a boundary horosphere of H\ ∪ B.

Modifying the map f by at worst the constant C from Lemma 4.9.2, we

have that the boundary horospheres of H\ ∪ B get mapped by quasi-isometric

embeddings to other boundary horospheres of the truncated space. We now

extend f to a mapping F of all of H as follows.

Recall that a horoball B is foliated by a family of geodesic rays, each one

starting from a point on the horosphere ∂B and terminating in the same point

ξ ∈ ∂H. Now, for each B1 ∈ B, f sends ∂B to another horosphere ∂B2, so we

have a way of matching up the geodesic rays foliating B1 with the geodesic rays

foliating B2. Define the extension F on B via this matching up of geodesic rays.

We now make use of another lemma of Richard Schwartz:

Lemma 4.9.3 (R. Schwartz [41]). Let f : ∂B1 → ∂B2 be a quasi-isometry

of Riemannian horospheres. Then F : B1 → B2 defined by extending along

geodesic rays is a quasi-isometry.

Remark 4.9.4. Lemma 4.9.3 only applies to quasi-isometries, and we only have

a quasi-isometric embedding. This is resolved by Lemma 4.9.6 below.

Modulo Remark 4.9.4, we thus have transitioned from a quasi-isometric em-

bedding f : Γ→ Γ to a mapping F : H → H that is a quasi-isometric embedding

on the truncated space H\ ∪ B and a quasi-isometry from each B ∈ B onto its

image horoball. We would like to combine these facts to say that F : H → H is

a quasi-isometric embedding, but we only obtain:

Lemma 4.9.5. The extension F : H → H is a coarse embedding. That is,

there exist control functions α(d) and ω(d) such that we have

α(|x− y|) ≤ |fx− fy| ≤ ω(|x− y|)

with α, β : R→ R increasing proper functions.
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The proof of Theorem 4.9.1 now comes down to the following key lemma

(which also resolves Remark 4.9.4:

Lemma 4.9.6 (Theorem 3.8 of [22]). Let X be a uniformly contractible uni-

formly acyclic metric space space homeomorphic to a disk (such as Rn,Φn, or

non-compact rank one symmetric spaces with the standard Riemannian met-

rics). Let f : X → X be a (α, ω)-coarse embedding. Then f is roughly onto,

with the constant depending quantitatively on the space, α, and ω.

Sketch of proof. Using the uniform acyclicity of X, f can be replaced by a con-

tinuous map (consider a mesh in X and replace f by a piecewise-linear map

defined by interpolating on the mesh). By uniform contractibility, the con-

tinuous map must then induce an isomorphism on the compactly supported

cohomology. In particular, it must be surjective.

We thus have that the extended map F : H → H is roughly onto. It follows

that the map f : H\∪B → H\∪B is roughly onto, and therefore that f : Γ→ Γ

is roughly onto.

This concludes the sketch of Theorem 4.9.1 and therefore of Theorem 4.8.3.
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rics. J. Differential Geom., 32(3):819–850, 1990.

[18] J. Heinonen. Lectures on Analysis on Metric Spaces. Springer, New York,
2000.

[19] J. Heinonen. Lectures on Lipschitz analysis, volume 100 of Report. Univer-
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