Some problem-solving hints:

- 1. Don't panic.
- 2. If you're stuck, at least try something.
- 3. If you can't do something, don't.
- 4. If things gets weird, there's probably a mistake.
- 5. If you can't solve a problem, solve an easier problem first.
- 6. When in doubt, write it out.
- 7. Remember: $(a + b)^2 \neq a^2 + b^2$.

Laws of limits:

Suppose $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, and c is a constant. Then:

1.
$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$$

2.
$$\lim_{x\to a} [f(x) - g(x)] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x)$$

3.
$$\lim_{x\to a} [cf(x)] = c \lim_{x\to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = (\lim_{x \to a} f(x)) \cdot (\lim_{x \to a} g(x))$$

5.
$$\lim_{x\to a} [f(x)/g(x)] = (\lim_{x\to a} f(x)) / (\lim_{x\to a} g(x))$$
 if $\lim_{x\to a} g(x) \neq 0$

6.
$$\lim_{x\to a} c = c$$

7.
$$\lim_{x\to a} x = a$$

Problem 1. (6 points) Simplify the following:

$$a) \ \frac{(4^3 \cdot 5^{-2})^2}{2^6 \cdot 7}$$

b)
$$\sqrt{x^2}$$

c)
$$e^{2\ln 5}$$

Problem 2. (4 points) What is the domain of $\sqrt{|x|}$?

Problem 3. (10 points) Compute $\lim_{x\to 2} \frac{x^2}{x+3}$ using the Limit Laws (no short-cuts!). Use only one limit law in each step and tell me which law you are using.

Problem 4. (10 points) Suppose we have the following income tax system: fo the first \$10,000 there is no tax. Any income past \$10,000 is taxed at 10%.	r
a) Write the amount of tax paid as a function $f(x)$ of the income.	
b) What is $f'(x)$?	
c) What is the significance of $f'(x)$ in this situation?	

Problem 5. (5 points) Graph $y = \cos(x + \pi/4)$.

Problem 6. (5 points) Graph $y = x^2 + 4x + 1$ by completing the square.

Problem 7. (15 points) Let $f(x) = \frac{(x-1)^2}{x^2}$.

a) Compute all vertical or horizontal asymptotes for f.

b) Graph f(x) using the previous answer.

Problem 8. (15 points) Let $f(x) = \frac{x^2 + 3x - 2}{x - 2}$.

a) Compute $\lim_{x\to 2} f(x)$.

b) What does it mean for a function to be continous at a point a?

c) At what points is f continuous?

d) Graph f(x).

Problem 9. (15 points) Let
$$f(x) = \begin{cases} x^2 \sin(1/x) + x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

a) Is f(x) continuous at 0? Prove that you are correct.

b) Does f'(0) exist? If it does not exist, explain why not. If it does exist, what is its value?

Problem 10. (10 points) Use the limit definition of derivative to compute $\frac{d}{dt}(5t-9t^2)$. Do NOT use any shortcuts.

Problem 11. (10 points) Does there exist a number whose sine is equal to its square root? Your explanation should be very precise and clear (use full sentences).