From Wikipedia: "Although implicit in the development of calculus of the 17th and 18th centuries (Newton published his *Principia Mathematica* in 1687), the modern idea of the limit of a function goes back to Bolzano who, in 1817, introduced the basics of the ϵ - δ technique to define continuous functions. However, his work was not known during his lifetime. Cauchy discussed limits in his *Cours d'analyse* (1821) and gave essentially the modern definition, but this is not often recognized because he only gave a verbal definition. Weierstrass first introduced the ϵ - δ definition of limit in the form it is usually written today. He also introduced the notations lim and $\lim_{x\to x_0}$. The modern notation of placing the arrow below lim is due to Hardy in *A Course of Pure Mathematics* in 1908."

Problem 1. How many years did it take for mathematicians to come up with the Limit Laws as we see them? How many mathematicians did it take?

Problem 2. Write down the 11 Limit Laws. Which of the rules allow us to "plug the point in"?

Problem 3. Compute the limit, showing **all** work and stating which Limit Law you used (think of the expression as a single piece that you can only change using the Limit Laws):

$$\lim_{x \to -1} \sqrt[5]{\frac{2x+3}{x^2}}$$

Problem 4. Compute the following limits, showing some work. Discuss which laws or theorems you are using.

(a)
$$\lim_{x \to 3} (5x^3 - 3x^2 + x - 6)$$

(b)
$$\lim_{x\to -2} \sqrt{u^4 + 3u + 6}$$

(c)
$$\lim_{x\to 3} (2x + |x - 3|)$$

(d)
$$\lim_{x \to -2} \frac{x+2}{x^3+8}$$

(e)
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

(f)
$$\lim_{x \to 0} \sqrt{x^3 + x^2} \sin(\pi/x)$$

(g) $\lim_{x\to 1} g(x)$, if you know that $2x \leq g(x) \leq x^4 - x^2 + 2$ for all x.

(h) $\lim_{x\to 1} h(x)$, if you know that $2x \le h(x) \le x^4 - x^2 + 2$ for all x > 1.