LAB 7

Modular Arithmetic

PROBLEM 7.1. What does each of the following functions do?

(a) fun[x_]:=If[x==0, "It’s zero", "It’s not zero"]

(b) func[x_]:=x*func[x-1]

(¢) funct[x_]:=If[x==0, 1, x*funct[x-1]]]

21



22 7. MODULAR ARITHMETIC

PROBLEM 7.2. Write a recursive function MyDiv[a_, b_] that returns
the pair {Quo(a,b), Rem(a, b)}. Watch out for weird cases. Then use MyDiv
to make functions MyQuo and MyRem.

PROBLEM 7.3. Write a ModularAddition[a_, b_, m_] function that
computes the sum of @ and b, and is only correct mod m. For example, the
output of ModularAddition[6, 7, 10] should be 3. You may use Mathe-
matica’s + operation and MyRem.



7. MODULAR ARITHMETIC 23

PROBLEM 7.4. Look back at the multiplication worksheet where we fig-
ured out how to quickly multiply two numbers. Then use ModularAddition
to write a recursive ModularMultiply[a_, b_, m_] function that computes
the product of a and b, and is only correct mod m.

PROBLEM 7.5. To make RSA work, we will also need exponents.

(a) Write a recursive function QuickExponentiate[a_, b_] that computes
a® (for b > 0). Hint: use the same trick as for multiplication.



24 7. MODULAR ARITHMETIC

(b) Write a recursive function ModularExponentiatela_, b_, m_] that
computes a’ (for b > 0), and is only correct mod m.



