LAB 5

Kid Krypto

Kid Krypto is a public key cryptosystem. If Nick would like to receive secret messages, he first chooses any four positive integers that only he will know: a, b, c, and d. Then he computes:

$$
\begin{aligned}
M & =a b-1, \\
e & =c M+a, \\
f & =d M+b, \\
n & =\frac{e f-1}{M} .
\end{aligned}
$$

Nick tells everyone who wants to send him a message the numbers e and n, these numbers form Nick's public key. However, Nick keeps his private key, the number f, completely secret. (Nick can securely delete the other numbers used to generate the keys.)

To send Nick a message x, encoded as an integer in the range $0 \leq x \leq$ $n-1$, the sender computes

$$
y=\operatorname{REM}(e x, n)
$$

and sends y. To decipher the message y, Nick computes

$$
\operatorname{REM}(f y, n)
$$

to recover x.
Experiment 5.1. Suppose Nick chooses $a=47, b=22, c=11$, and $d=5$.
(a) What numbers M, e, f, and n would Nick calculate?
(b) Write a Mathematica function called Encrypt to encode message for the public key pair e, n you just computed. Use your function to encode the message $x=2020$.
(c) Write a Mathematica function called Decrypt that decodes a message y using the private key f. Use your function to decode the encrypted message $y=43155$.

Problem 5.2. On a different day, Nick announces a new public key:

$$
n=17239722505 \quad e=25540219 .
$$

Nora sends him an encrypted message that you intercept: $y=7218695996$.
Crack the encryption to read Nora's message. What does it say?

Problem 5.3. You intercept another message from Nora to Nick: $y=$ 8617388 745. What does it say? (Hint: try the command IntegerDigits [263, 26] and improvise based on that.)

Problem 5.4. Explain why Kid Krypto works. In other words, how do you know that $x=\operatorname{REM}(f y, n)$?

Problem 5.5. Is Kid Krypto secure? How would you write a Mathematica program to break Kid Krypto?

