
LAB 7

MyPowerMod and RSA

The goal of this lab is to write our own PowerMod function and then
use it to build RSA encryption and decryption functions. We have already
written functions for taking quotients and remainders, so feel free to use
Mathematica’s Quotient and Mod commands.

Problem 7.1. What does the Mathematica function PowerMod[a,b,m]

do? Start with m = 26 and b = 1, and explore from there.

Problem 7.2. Write a PositivePowerMod[a_,b_,m_] command that
assumes that b is positive and computes rem (ab,m). Remember to use re-
cursion and the fast-exponentiation approach (b might be a 10-digit number,
or even longer).

19



20 7. MYPOWERMOD AND RSA

Problem 7.3. We are about to implement the Extended Euclidean Al-
gorithm in Mathematica. In order to remember how it works, use it to find
the Bézout coefficients for a = 137 and b = 53, using the table approach.

Problem 7.4. Write a ExtendedEuclideanTable[a_,b_] that creates
the table we generate with the Extended Euclidean Algorithm.

It should look roughly like this:

ExtendedEuclideanTable[a_,b_]:=Module[{EETable={},i=1},

AppendTo[EETable, (*add the starting row*)];

While[(*remainder of a and b is not zero*),

(*add a new row to EETable*);

i++;

];

(*fill in the starting i-th row of s and t values*)

While[(*we have not returned to the top*),

i--;

(*fill in the i-th row of s and t values*);

];

EETable;

]

Problem 7.5. Does ExtendedEuclideanTable[137,53] produce the
same table as you made in Problem 7.3?



7. MYPOWERMOD AND RSA 21

Problem 7.6. By accessing the correct cells inside the table produced by
ExtendedEuclideanTable, write functions MyGCD[a_,b_], MyBezout[a_,b_]
and MyMultiplicativeInverse[a_,m_].

Hint: Tables are just lists of lists. To get the third element of a list T,
use the command T[[3]]. To get the last one, use T[[-1]].

Problem 7.7. Write a MyPowerMod[a_,b_,m_] function by combining
MyMultiplicativeInverse and PositivePowerMod.



22 7. MYPOWERMOD AND RSA

Problem 7.8. Make a MakeRSAKeys[] function that randomly chooses
{e, d, n}. It should look something like:

MakeRSAKeys[a_,b_]:=Module[{p,q,e,n,m,d},,

p=RandomPrime[10^9,10^10];

(*Generate q and e, and compute n, m, and d*)

{n,e,d}

]

Make sure you use MyPowerMod to compute d. Use MakeRSAKeys[] to
generate RSA public and private keys, and post your public key on the
whiteboard.

Problem 7.9. Use MyPowerMod to create the functions

RSAEncode[text_,e_,n_]:=MyPowerMod[

FromDigits[

ToCharacterCodes[text]-97,

26

],e,n];

RSADecode[y_,d_,n_]:=

FromCharacterCodes[

FromIntegerDigits[

MyPowerMod[y,d,n],

26

]+97;

]

Use these to send messages to other teams, or sign your announcements.
This time, we can’t (easily) crack your encryption, so make sure you’re
writing the correct numbers on the board.


