
LAB 3

Adding and Multiplying

Experiment 3.1. On paper, add 658 and 986:

(a) Using the usual way, writing one under the other and carrying 1’s where
necessary.

(b) In a more lazy way, making a new number out of the carried 1’s and
adding it in separately (and repeating the lazyness as necessary).

Experiment 3.2. Using the lazy approach, calculate:

(a) 51210 + 37019

(b) 45780 + 73175

7



8 3. ADDING AND MULTIPLYING

Experiment 3.3. Use Mathematica’s BaseForm command to view 658
and 986 in binary (the way they are actually stored on the computer).

(a) Staying in binary, add the two numbers while carrying 1’s.

(b) Staying in binary, add the two numbers using the lazy approach.

(c) Each step of the lazy approach produces two numbers. Explain concisely
how each digit of the partial sum and the carry is produced.

(d) Add 1101011112 and 11011010002 using lazy addition.

Remark. Lazy addition in binary is actually the way that computers
add numbers. It’s extremely fast.



3. ADDING AND MULTIPLYING 9

Experiment 3.4. Make a command WhileDemonstrationFunction:

WhileDemonstrationFunction[x_] := Module[{a = x, b = 0},
While[a > 0,
a = a - 1;
b = b - 1;
];
b

]
Plug some numbers into WhileDemonstrationFunction. What does it do?
Make sure you understand how it works.

Remark. For the rest of the worksheet, forget about negative numbers.

Problem 3.5. Write a function called SlowMultiply that multiplies
two numbers using the algorithm from class. Make sure it works, and then
use the Timing command to compare its speed with Mathematica’s built in
multiplication.



10 3. ADDING AND MULTIPLYING

Experiment 3.6. (a) Which of the following is divisible by 10? If it’s
divisible by 10, divide it. Why is this so easy?

8389, 6665, 1730, 5578

(b) Which of the above numbers is divisible by 2? If it’s divisible by 2,
divide it.

(c) Which of the following is divisible by 2? If it’s divisible by 2, divide it
(leaving it in base-2).

10101010002, 11010101012, 1000010102, 1110100002

Problem 3.7. What does each of the following functions do?

(a) fun[x_]:=If[x==0, "It’s zero", "It’s not zero"]

(b) func[x_]:=x*func[x-1]

(c) funct[x_]:=If[x==0, 1, x*funct[x-1]]]

Problem 3.8. Using the fact that it’s so easy for a computer to divide
by 2, write a new function FastMultiply. How does its speed compare to
SlowMultiply?


