LAB 5

Kid Krypto

Problem 5.1. Write a recursive function MyDiv[a_, b_] that returns the pair $\{\operatorname{Quo}(a, b), \operatorname{Rem}(a, b)\}$. Watch out for weird cases. Then use MyDiv to make functions MyQuo and MyRem.

Problem 5.2. Write a ModularAddition[a_, $\mathrm{b}_{-}, \mathrm{m}_{-}$] function that computes the sum of a and b, and is only correct mod m. For example, the output of ModularAddition [6, 7, 10] should be 3. You may use Mathematica's + operation and MyRem.

Problem 5.3. Look back at the multiplication worksheet where we figured out how to quickly multiply two numbers. Then use ModularAddition to write a recursive ModularMultiply [a_, $\left.\mathrm{b}_{-}, \mathrm{m}_{-}\right]$function that computes the product of a and b, and is only correct $\bmod m$.

Kid Krypto is a public key cryptosystem. If Ada would like to receive secret messages, she first chooses any four positive integers that only she will know: a, b, c, and d. Then she computes:

$$
\begin{aligned}
M & =a b-1, \\
e & =c M+a, \\
f & =d M+b, \\
n & =\frac{e f-1}{M} .
\end{aligned}
$$

Ada tells everyone who wants to send her a message the numbers e and n, these numbers form Ada's public key. However, Ada keeps her private key, the number f, completely secret. (Ada can securely delete the other numbers used to generate the keys.)

To send Ada a message x, encoded as an integer in the range $0 \leq x \leq$ $n-1$, the sender computes

$$
y=\operatorname{REM}(e x, n)
$$

and sends y. To decipher the message y, Ada computes

$$
\operatorname{REM}(f y, n)
$$

to recover x.
Experiment 5.4. Suppose Ada chooses $a=47, b=22, c=11$, and $d=5$.
(a) What numbers M, e, f, and n would Ada calculate?
(b) Write a Mathematica function called MyEncrypt to encode message for the public key pair e, n you just computed. Use your function to encode the message $x=2020$.
(c) Write a Mathematica function called MyDecrypt that decodes a message y using the private key f. Use your function to decode the encrypted message $y=43155$.

Problem 5.5. On a different day, Ada announces a new public key:

$$
n=17239722505 \quad e=25540219 .
$$

Charles sends her an encrypted message that you intercept: $y=7218695996$. Crack the encryption to read Charles's message. What does it say?

Problem 5.6. You intercept another message from Charles to Ada: $y=$ 8617388745 . What does it say? (Hint: try the command IntegerDigits [263, 26] and improvise based on that.)

